• rapamycin;
  • autophagy;
  • apoptosis;
  • rCHO cells


Rapamycin, a specific mTOR inhibitor, has been used as a chemical activator in autophagy research both in vitro and in vivo. Recently, autophagy has received attention as an anti-cell death engineering target in addition to apoptosis in the Chinese hamster ovary (CHO) cell engineering field. Here, the effect of rapamycin and the subsequent autophagy induction is investigated on two CHO cell lines, DG44 host and an antibody-producing recombinant CHO (rCHO), in a serum-free suspension culture. In both cell lines, the rapamycin treatment delayed the viability drop and apoptosis induction. In particular, the improved cell viability of the antibody-producing rCHO cell line resulting from the rapamycin treatment led to a 21% increase in the maximum antibody concentration. From observations that a rapamycin derivative, everolimus, demonstrated similar positive effects in both cell lines, but not FK-506, which forms the same complex as rapamycin, but does not inhibit mTOR, it was demonstrated that the positive effects of rapamycin appear to be mTOR-dependent. In addition, the cultivation with rapamycin and/or an autophagy inhibitor, bafilomycin A1, indicated that the autophagy induction is related to the positive effects of rapamycin. The genetic perturbation of the autophagy pathway through the regulation of the expression level of Beclin-1, an important autophagy regulator, resulted in a delayed autophagy induction and apoptosis inhibition in response to the rapamycin treatment in the DG44 host cell line. Taken together, the results obtained in this study imply a positive role for autophagy and predict the usefulness of pro-autophagy engineering in CHO cell cultures. Biotechnol. Bioeng. 2012; 109: 3093–3102. © 2012 Wiley Periodicals, Inc.