Get access

Multi-cycle recovery of lactoferrin and lactoperoxidase from crude whey using fimbriated high-capacity magnetic cation exchangers and a novel “rotor–stator” high-gradient magnetic separator

Authors

  • Geoffrey N. Brown,

    1. School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, UK; telephone: 01509 222500; fax: 01509 223923
    Current affiliation:
    1. UCB, 638 Ajax Avenue, Slough, Berkshire SL1 4BG, UK.
    Search for more papers by this author
  • Christine Müller,

    1. School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, UK; telephone: 01509 222500; fax: 01509 223923
    2. Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    Search for more papers by this author
  • Eirini Theodosiou,

    Corresponding author
    1. School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, UK; telephone: 01509 222500; fax: 01509 223923
    Current affiliation:
    1. Department of Chemical Engineering, School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Loughborough LE11 3TU, UK.
    • School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, UK; telephone: 01509 222500; fax: 01509 223923.
    Search for more papers by this author
  • Matthias Franzreb,

    1. Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
    Search for more papers by this author
  • Owen R.T. Thomas

    1. School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, UK; telephone: 01509 222500; fax: 01509 223923
    Search for more papers by this author

Abstract

Cerium (IV) initiated “graft-from” polymerization reactions were employed to convert M-PVA magnetic particles into polyacrylic acid-fimbriated magnetic cation exchange supports displaying ultra-high binding capacity for basic target proteins. The modifications, which were performed at 25 mg and 2.5 g scales, delivered maximum binding capacities (Qmax) for hen egg white lysozyme in excess of 320 mg g−1, combined with sub-micromolar dissociation constants (0.45–0.69 µm) and “tightness of binding” values greater than 49 L g−1. Two batches of polyacrylic acid-fimbriated magnetic cation exchangers were combined to form a 5 g pooled batch exhibiting Qmax values for lysozyme, lactoferrin, and lactoperoxidase of 404, 585, and 685 mg g−1, respectively. These magnetic cation exchangers were subsequently employed together with a newly designed “rotor–stator” type HGMF rig, in five sequential cycles of recovery of lactoferrin and lactoperoxidase from 2 L batches of a crude sweet bovine whey feedstock. Lactoferrin purification performance was observed to remain relatively constant from one HGMF cycle to the next over the five operating cycles, with yields between 40% and 49% combined with purification and concentration factors of 37- to 46-fold and 1.3- to 1.6-fold, respectively. The far superior multi-cycle HGMF performance seen here compared to that observed in our earlier studies can be directly attributed to the combined use of improved high capacity adsorbents and superior particle resuspension afforded by the new “rotor–stator” HGMS design. Biotechnol. Bioeng. 2013; 110: 1714–1725. © 2013 Wiley Periodicals, Inc.

Ancillary