SEARCH

SEARCH BY CITATION

References

  • Alper H, Jin YS, Moxley JF, Stephanopoulos G. 2005. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7(3):155164.
  • Asadollahi MA, Maury J, Patil KR, Schalk M, Clark A, Nielsen J. 2009. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11(6):328334.
  • Bro C, Regenberg B, Forster J, Nielsen J. 2006. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 8(2):102111.
  • Burgard AP, Pharkya P, Maranas CD. 2003. Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84(6):647657.
  • Choi YJ, Lee SY. 2013. Microbial production of short-chain alkanes. Nature 502(7472):571574.
  • Clomburg JM, Vick JE, Blankschien MD, Rodriguez-Moya M, Gonzalez R. 2012. A synthetic biology approach to engineer a functional reversal of the beta-oxidation cycle. ACS Synth Biol 1(11):541554.
  • Covert MW, Xiao N, Chen TJ, Karr JR. 2008. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24(18):20442050.
  • Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. 2011. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 476(7360):355359.
  • Demirbas A. 2009. Political, economic and environmental impacts of biofuels: A review. Appl Energ 86:S108S117.
  • Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BO. 2007. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121.
  • Fowler ZL, Gikandi WW, Koffas MA. 2009. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75(18):58315839.
  • Gabrielle B. 2008. Significance and limitations of first generation biofuels. J Soc Biol 202(3):161165.
  • Handke P, Lynch SA, Gill RT. 2011. Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab Eng 13(1):2837.
  • He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewicz MR, Tang YJ, Peng L. 2014. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnol Bioeng 111(3):575585.
  • Huffer S, Roche CM, Blanch HW, Clark DS. 2012. Escherichia coli for biofuel production: Bridging the gap from promise to practice. Trends Biotechnol 30(10):538545.
  • Hyduke DR, Lewis NE, Palsson BO. 2013. Analysis of omics data with genome-scale models of metabolism. Mol Biosyst 9(2):167174.
  • Jing F, Cantu DC, Tvaruzkova J, Chipman JP, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ. 2011. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12:44.
  • Kim J, Reed JL, Maravelias CT. 2011. Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PLoS ONE 6(9):e24162.
  • Lee JW, Kim TY, Jang YS, Choi S, Lee SY. 2011a. Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29(8):370378.
  • Lee S, Jeon E, Jung Y, Lee J. 2012. Heterologous co-expression of accA, fabD, and thioesterase genes for improving long-chain fatty acid production in Pseudomonas aeruginosa and Escherichia coli. Appl Biochem Biotechnol 167(1):2438.
  • Lee S, Jeon E, Yun HS, Lee J. 2011b. Improvement of fatty acid biosynthesis by engineered recombinant Escherichia coli. Biotechnol Bioprocess Eng 16(4):706713.
  • Lee S, Park S, Lee J. 2013. Improvement of free fatty acid production in Escherichia coli using codon-optimized Streptococcus pyogenes acyl-ACP thioesterase. Bioprocess Biosyst Eng 36(10):15191525.
  • Lennen RM, Braden DJ, West RA, Dumesic JA, Pfleger BF. 2010. A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 106(2):193202.
  • Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD II. 2011. Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 77(22):81148128.
  • Lennen RM, Pfleger BF. 2012. Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol 30(12):659667.
  • Li M, Zhang X, Agrawal A, San KY. 2012. Effect of acetate formation pathway and long chain fatty acid CoA-ligase on the free fatty acid production in E. coli expressing acy-ACP thioesterase from Ricinus communis. Metab Eng 14(4):380387.
  • Liu H, Yu C, Feng DX, Cheng T, Meng X, Liu W, Zou HB, Xian M. 2012. Production of extracellular fatty acid using engineered Escherichia coli. Microb Cell Fact 1154.
  • Liu T, Khosla C. 2010. Genetic engineering of Escherichia coli for biofuel production. Annu Rev Genet 44:5369.
  • Liu T, Vora H, Khosla C. 2010. Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng 12(4):378386.
  • Lu X, Vora H, Khosla C. 2008. Overproduction of free fatty acids in E. coli: Iimplications for biodiesel production. Metab Eng 10(6):333339.
  • Maia P, Vilaca P, Rocha I, Pont M, Tomb JF, Rocha M. 2012. An integrated computational environment for elementary modes analysis of biochemical networks. Int J Data Min Bioinform 6(4):382395.
  • Park JH, Lee KH, Kim TY, Lee SY. 2007. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104(19):77977802.
  • Pharkya P, Burgard AP, Maranas CD. 2004. OptStrain: A computational framework for redesign of microbial production systems. Genome Res 14(11):23672376.
  • PhysOrg. 2013. Modified bacteria turn waste into fat for fuel, 2013-02-28.
  • Ranganathan S, Suthers PF, Maranas CD. 2010. OptForce: An optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol 6(4):e1000744.
  • Ranganathan S, Tee TW, Chowdhury A, Zomorrodi AR, Yoon JM, Fu Y, Shanks JV, Maranas CD. 2012. An integrated computational and experimental study for overproducing fatty acids in Escherichia coli. Metab Eng 14(6):687704.
  • San KY, Li M. 2013. Genetically engineered bacteria and method for synthesizing fatty acids. Patent WO 2013059218.
  • San K-Y Li M, Zhang X. 2011. Fatty acid production by recombinant microorganisms expressing plant hybrid thioesterase genes. Patent WO 2011116279.
  • Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD. 2010. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559562.
  • Torella JP, Ford TJ, Kim SN, Chen AM, Way JC, Silver PA. 2013. Tailored fatty acid synthesis via dynamic control of fatty acid elongation. Proc Natl Acad Sci U S A 110(28):1129011295.
  • Xu P, Gu Q, Wang W, Wong L, Bower AG, Collins CH, Koffas MA. 2013. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 4:1409.
  • Xu P, Ranganathan S, Fowler ZL, Maranas CD, Koffas MA. 2011. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13(5):578587.
  • Yang L, Cluett WR, Mahadevan R. 2011. EMILiO: A fast algorithm for genome-scale strain design. Metab Eng 13(3):272281.
  • Youngquist JT, Rose JP, Pfleger BF. 2013. Free fatty acid production in Escherichia coli under phosphate-limited conditions. Appl Microbiol Biotechnol 97(11):51495159.
  • Yu X, Liu T, Zhu F, Khosla C. 2011. In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli. Proc Natl Acad Sci U S A 108(46):1864318648.
  • Zhang F, Carothers JM, Keasling JD. 2012a. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30(4):354359.
  • Zhang F, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD. 2012b. Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng 14(6):653660.
  • Zhang F, Rodriguez S, Keasling JD. 2011a. Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22(6):775783.
  • Zhang X, Agrawal A, San KY. 2012c. Improving fatty acid production in Escherichia coli through the overexpression of malonyl coA-acyl carrier protein transacylase. Biotechnol Prog 28(1):6065.
  • Zhang X, Li M, Agrawal A, San KY. 2011b. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng 13(6):713722.
  • Zheng Y, Li L, Liu Q, Qin W, Yang J, Cao Y, Jiang X, Zhao G, Xian M. 2012. Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase. Biotechnol Biofuels 5(1):7688.