SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Elie Desmond-Le Quéméner, Théodore Bouchez, A thermodynamic theory of microbial growth, The ISME Journal, 2014, 8, 8, 1747

    CrossRef

  2. 2
    T. C. Onstott, C. Magnabosco, A. D. Aubrey, A. S. Burton, J. P. Dworkin, J. E. Elsila, S. Grunsfeld, B. H. Cao, J. E. Hein, D. P. Glavin, T. L. Kieft, B. J. Silver, T. J. Phelps, E. Heerden, D. J. Opperman, J. L. Bada, Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?, Geobiology, 2014, 12, 1
  3. 3
    Hui Lin, Martial Taillefert, Key geochemical factors regulating Mn(IV)-catalyzed anaerobic nitrification in coastal marine sediments, Geochimica et Cosmochimica Acta, 2014, 133, 17

    CrossRef

  4. 4
    Nathalie J. Lombard, Upal Ghosh, Birthe V. Kjellerup, Kevin R. Sowers, Kinetics and Threshold Level of 2,3,4,5-Tetrachlorobiphenyl Dechlorination by an Organohalide Respiring Bacterium, Environmental Science & Technology, 2014, 48, 8, 4353

    CrossRef

  5. 5
    Mayumi Seto, The Gibbs free energy threshold for the invasion of a microbial population under kinetic constraints, Geomicrobiology Journal, 2014, 140708183255006

    CrossRef

  6. 6
    S. Sevinç Şengör, Timothy R. Ginn, Christopher J. Brugato, Petros Gikas, Anaerobic microbial growth near thermodynamic equilibrium as a function of ATP/ADP cycle: The effect of maintenance energy requirements, Biochemical Engineering Journal, 2013, 81, 65

    CrossRef

  7. 7
    F. L. Sousa, T. Thiergart, G. Landan, S. Nelson-Sathi, I. A. C. Pereira, J. F. Allen, N. Lane, W. F. Martin, Early bioenergetic evolution, Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 1622, 20130088

    CrossRef

  8. 8
    Mohamad Ali Fulazzaky, Measurement of biochemical oxygen demand of the leachates, Environmental Monitoring and Assessment, 2013, 185, 6, 4721

    CrossRef

  9. 9
    J. P. Amend, D. E. LaRowe, T. M. McCollom, E. L. Shock, The energetics of organic synthesis inside and outside the cell, Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 1622, 20120255

    CrossRef

  10. 10
    S. Xie, J. S. Lipp, G. Wegener, T. G. Ferdelman, K.-U. Hinrichs, Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations, Proceedings of the National Academy of Sciences, 2013, 110, 15, 6010

    CrossRef

  11. 11
    Thermodynamics in Biochemical Engineering, 2013,

    CrossRef

  12. 12
    Thermodynamics in Biochemical Engineering, 2013,

    CrossRef

  13. 13
    Jay P. Zarnetske, Roy Haggerty, Steven M. Wondzell, Vrushali A. Bokil, Ricardo González-Pinzón, Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones, Water Resources Research, 2012, 48, 11
  14. 14
    Raquel Pedrosa Bezerra, Marcelo Chuei Matsudo, Sunao Sato, Patrizia Perego, Attilio Converti, João Carlos Monteiro de Carvalho, Effects of photobioreactor configuration, nitrogen source and light intensity on the fed-batch cultivation of Arthrospira (Spirulina) platensis. Bioenergetic aspects, Biomass and Bioenergy, 2012, 37, 309

    CrossRef

  15. 15
    Alice T. Langerhuus, Hans Røy, Mark A. Lever, Yuki Morono, Fumio Inagaki, Bo B. Jørgensen, Bente Aa. Lomstein, Endospore abundance and d:l-amino acid modeling of bacterial turnover in holocene marine sediment (Aarhus Bay), Geochimica et Cosmochimica Acta, 2012, 99, 87

    CrossRef

  16. 16
    Bente Aa. Lomstein, Alice T. Langerhuus, Steven D’Hondt, Bo B. Jørgensen, Arthur J. Spivack, Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment, Nature, 2012, 484, 7392, 101

    CrossRef

  17. 17
    Daniel Kuhn, Bruno Bühler, Andreas Schmid, Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas, Journal of Industrial Microbiology & Biotechnology, 2012, 39, 8, 1125

    CrossRef

  18. 18
    Thomas Maskow, Katrin Wolf, Wolfgang Kunze, Sabine Enders, Hauke Harms, Rapid analysis of bacterial contamination of tap water using isothermal calorimetry, Thermochimica Acta, 2012, 543, 273

    CrossRef

  19. 19
    Xiaona N. Li, Gordon T. Taylor, Yrene Astor, Ramon Varela, Mary I. Scranton, The conundrum between chemoautotrophic production and reductant and oxidant supply: A case study from the Cariaco Basin, Deep Sea Research Part I: Oceanographic Research Papers, 2012, 61, 1

    CrossRef

  20. 20
    Wei-Dong Huang, Y.-H. Percival Zhang, Analysis of biofuels production from sugar based on three criteria: Thermodynamics, bioenergetics, and product separation, Energy & Environmental Science, 2011, 4, 3, 784

    CrossRef

  21. 21
    D.W. Shiers, D.E. Ralph, H.R. Watling, Batch culture of Acidithiobacillus caldus on tetrathionate, Biochemical Engineering Journal, 2011, 54, 3, 185

    CrossRef

  22. 22
    W.W.J.M. de Vet, I.J.T. Dinkla, L.C. Rietveld, M.C.M. van Loosdrecht, Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions, Water Research, 2011, 45, 17, 5389

    CrossRef

  23. 23
    Urs von Stockar, Ian Marison, Marcel Janssen, Rodrigo Patiño, Calorimetry and thermodynamic aspects of heterotrophic, mixotrophic, and phototrophic growth, Journal of Thermal Analysis and Calorimetry, 2011, 104, 1, 45

    CrossRef

  24. 24
    Mirjam Perner, Michael Hentscher, Nicolas Rychlik, Richard Seifert, Harald Strauss, Wolfgang Bach, Driving forces behind the biotope structures in two low-temperature hydrothermal venting sites on the southern Mid-Atlantic Ridge, Environmental Microbiology Reports, 2011, 3, 6
  25. 25
    Qusheng Jin, Eric E. Roden, Microbial physiology-based model of ethanol metabolism in subsurface sediments, Journal of Contaminant Hydrology, 2011, 125, 1-4, 1

    CrossRef

  26. 26
    A. Val del Río, N. Morales, E. Isanta, A. Mosquera-Corral, J.L. Campos, J.P. Steyer, H. Carrère, Thermal pre-treatment of aerobic granular sludge: Impact on anaerobic biodegradability, Water Research, 2011, 45, 18, 6011

    CrossRef

  27. 27
    Katrina J Edwards, B T Glazer, O J Rouxel, W Bach, D Emerson, R E Davis, B M Toner, C S Chan, B M Tebo, H Staudigel, C L Moyer, Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii, The ISME Journal, 2011, 5, 11, 1748

    CrossRef

  28. 28
    Emo Chiellini, Andrea Corti, Renewable Resources and Renewable Energy, 2011,

    CrossRef

  29. 29
    J.D. Istok, M. Park, M. Michalsen, A.M. Spain, L.R. Krumholz, C. Liu, J. McKinley, P. Long, E. Roden, A.D. Peacock, B. Baldwin, A thermodynamically-based model for predicting microbial growth and community composition coupled to system geochemistry: Application to uranium bioreduction, Journal of Contaminant Hydrology, 2010, 112, 1-4, 1

    CrossRef

  30. 30
    Urs von Stockar, Biothermodynamics of live cells: a tool for biotechnology and biochemical engineering, Journal of Non-Equilibrium Thermodynamics, 2010, 35, 4

    CrossRef

  31. 31
    Peter H. Janssen, Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics, Animal Feed Science and Technology, 2010, 160, 1-2, 1

    CrossRef

  32. 32
    Jeanine S. Geelhoed, Robbert Kleerebezem, Dimitry Y. Sorokin, Alfons J. M. Stams, Mark C. M. Van Loosdrecht, Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetospirillum strain J10 and Magnetospirillum gryphiswaldense, Environmental Microbiology, 2010, 12, 4
  33. 33
    Brian T. Glazer, Olivier J. Rouxel, Redox Speciation and Distribution within Diverse Iron-dominated Microbial Habitats at Loihi Seamount, Geomicrobiology Journal, 2009, 26, 8, 606

    CrossRef

  34. 34
    H. N. Schrum, A. J. Spivack, M. Kastner, S. D'Hondt, Sulfate-reducing ammonium oxidation: A thermodynamically feasible metabolic pathway in subseafloor sediment, Geology, 2009, 37, 10, 939

    CrossRef

  35. 35
    Urs von Stockar, Vojislav Vojinović, Thomas Maskow, Jingsong Liu, Can microbial growth yield be estimated using simple thermodynamic analogies to technical processes?, Chemical Engineering and Processing: Process Intensification, 2008, 47, 6, 980

    CrossRef

  36. 36
    Verónica Beatriz Rajal, Carlos Mario Cuevas, Culture of Penicillium ulaiense in a batch-reactor: stoichiometric studies, World Journal of Microbiology and Biotechnology, 2008, 24, 7, 1081

    CrossRef

  37. 37
    Helmut Bürgmann, Jutta Kleikemper, Laurence Duc, Michael Bunge, Martin H. Schroth, Josef Zeyer, Detection and Quantification ofDehalococcoides-Related Bacteria in a Chlorinated Ethene-Contaminated Aquifer Undergoing Natural Attenuation, Bioremediation Journal, 2008, 12, 4, 193

    CrossRef

  38. 38
    Jinghua Xiao, Jeanne M. VanBriesen, Expanded thermodynamic true yield prediction model: adjustments and limitations, Biodegradation, 2008, 19, 1, 99

    CrossRef

  39. 39
    K.R. Blight, D.E. Ralph, Maximum yield and standard enthalpy of growth of iron-oxidising bacteria, Hydrometallurgy, 2008, 93, 1-2, 66

    CrossRef

  40. 40
    Rudolf K. Thauer, Anne-Kristin Kaster, Henning Seedorf, Wolfgang Buckel, Reiner Hedderich, Methanogenic archaea: ecologically relevant differences in energy conservation, Nature Reviews Microbiology, 2008, 6, 8, 579

    CrossRef

  41. 41
    Paul D. Majors, Jeffrey S. McLean, Johannes C.M. Scholten, NMR bioreactor development for live in-situ microbial functional analysis, Journal of Magnetic Resonance, 2008, 192, 1, 159

    CrossRef

  42. 42
    Irene Martins, Ana Colaço, Paul R. Dando, Inês Martins, Daniel Desbruyères, Pierre-Marie Sarradin, João Carlos Marques, Ricardo Serrão-Santos, Size-dependent variations on the nutritional pathway of Bathymodiolus azoricus demonstrated by a C-flux model, Ecological Modelling, 2008, 217, 1-2, 59

    CrossRef

  43. 43
    N. Barros, S. Feijóo, J. Salgado, B. Ramajo, J. R. García, L. D. Hansen, The Dry Limit of Microbial Life in the Atacama Desert Revealed by Calorimetric Approaches, Engineering in Life Sciences, 2008, 8, 5
  44. 44
    J.-S. Liu, V. Vojinović, R. Patiño, Th. Maskow, U. von Stockar, A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields, Thermochimica Acta, 2007, 458, 1-2, 38

    CrossRef

  45. 45
    Jennifer N. Smith, Everett L. Shock, A Thermodynamic Analysis of Microbial Growth Experiments, Astrobiology, 2007, 7, 6, 891

    CrossRef

  46. 46
    Thomas M. McCollom, Geochemical Constraints on Sources of Metabolic Energy for Chemolithoautotrophy in Ultramafic-Hosted Deep-Sea Hydrothermal Systems, Astrobiology, 2007, 7, 6, 933

    CrossRef

  47. 47
    Emo Chiellini, Andrea Corti, Salvatore D’Antone, Norman C. Billingham, Microbial biomass yield and turnover in soil biodegradation tests: carbon substrate effects, Journal of Polymers and the Environment, 2007, 15, 3, 169

    CrossRef

  48. 48
    Martin Thullner, Pierre Regnier, Philippe Van Cappellen, Modeling Microbially Induced Carbon Degradation in Redox-Stratified Subsurface Environments: Concepts and Open Questions, Geomicrobiology Journal, 2007, 24, 3-4, 139

    CrossRef

  49. 49
    NORMAN H. SLEEP, DENNIS K. BIRD, Niches of the pre-photosynthetic biosphere and geologic preservation of Earth's earliest ecology, Geobiology, 2007, 5, 2
  50. 50
    Rémy D. Tadonléké, Strong coupling between natural Planctomycetes and changes in the quality of dissolved organic matter in freshwater samples, FEMS Microbiology Ecology, 2007, 59, 3
  51. 51
    Perry L. McCarty, Thermodynamic electron equivalents model for bacterial yield prediction: Modifications and comparative evaluations, Biotechnology and Bioengineering, 2007, 97, 2
  52. 52
    Jinghua Xiao, Jeanne M. VanBriesen, Expanded thermodynamic model for microbial true yield prediction, Biotechnology and Bioengineering, 2006, 93, 1
  53. 53
    Christian Schröder, Brad Bailey, Göstar Klingelhöfer, Hubert Staudigel, Fe Mössbauer spectroscopy as a tool in astrobiology, Planetary and Space Science, 2006, 54, 15, 1622

    CrossRef

  54. 54
    Andrej Krzan, Sarunya Hemjinda, Stanislav Miertus, Andrea Corti, Emo Chiellini, Standardization and certification in the area of environmentally degradable plastics, Polymer Degradation and Stability, 2006, 91, 12, 2819

    CrossRef

  55. 55
    Anne Offner, Daniel Sauvant, Thermodynamic modeling of ruminal fermentations, Animal Research, 2006, 55, 5, 343

    CrossRef

  56. 56
    Urs von Stockar, Thomas Maskow, Jingsong Liu, Ian W. Marison, Rodrigo Patiño, Thermodynamics of microbial growth and metabolism: An analysis of the current situation, Journal of Biotechnology, 2006, 121, 4, 517

    CrossRef

  57. 57
    Ramaiah Sachidanandham, Yousif Al-Shayji, Nader Al-Awadhi, Karina Yew-Hoong Gin, A cryptic Bacillus isolate exhibited narrow 16S rRNA gene sequence divergence with Bacillus thuringiensis and showed low maintenance requirements in hyper-osmotic complex substrate cultivations, Biotechnology and Bioengineering, 2005, 91, 7
  58. 58
    T. M. MCCOLLOM, J. P. AMEND, A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments, Geobiology, 2005, 3, 2
  59. 59
    Axel Schippers, Lev N. Neretin, Jens Kallmeyer, Timothy G. Ferdelman, Barry A. Cragg, R. John Parkes, Bo B. Jørgensen, Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria, Nature, 2005, 433, 7028, 861

    CrossRef

  60. 60
    H. L. BUSS, M. A. BRUNS, M. J. SCHULTZ, J. MOORE, C. F. MATHUR, S. L. BRANTLEY, The coupling of biological iron cycling and mineral weathering during saprolite formation, Luquillo Mountains, Puerto Rico, Geobiology, 2005, 3, 4
  61. 61
    C.F. Mignone, E.R. Donati, ATP requirements for growth and maintenance of iron-oxidizing bacteria, Biochemical Engineering Journal, 2004, 18, 3, 211

    CrossRef

  62. 62
    Katrina J. Edwards, Wolfgang Bach, Thomas M. McCollom, Daniel R. Rogers, Neutrophilic Iron-Oxidizing Bacteria in the Ocean: Their Habitats, Diversity, and Roles in Mineral Deposition, Rock Alteration, and Biomass Production in the Deep-Sea, Geomicrobiology Journal, 2004, 21, 6, 393

    CrossRef

  63. 63
    Han-Qing Yu, Yang Mu, Herbert H. P. Fang, Thermodynamic analysis of product formation in mesophilic acidogenesis of lactose, Biotechnology and Bioengineering, 2004, 87, 7
  64. 64
    Nieves Barros, Sergio Feijóo, A combined mass and energy balance to provide bioindicators of soil microbiological quality, Biophysical Chemistry, 2003, 104, 3, 561

    CrossRef

  65. 65
    Wolfgang Bach, Katrina J Edwards, Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production, Geochimica et Cosmochimica Acta, 2003, 67, 20, 3871

    CrossRef

  66. 66
    Liangqiao Bian, Kai-Uwe Hinrichs, Tianmin Xie, Simon C. Brassell, Neils Iversen, Henrik Fossing, Bo Barker Jørgensen, John M. Hayes, Algal and archaeal polyisoprenoids in a recent marine sediment: Molecular isotopic evidence for anaerobic oxidation of methane, Geochemistry, Geophysics, Geosystems, 2001, 2, 1
  67. 67
    J.-S. Liu, I. W. Marison, U. von Stockar, Microbial growth by a net heat up-take: A calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri, Biotechnology and Bioengineering, 2001, 75, 2
  68. 68
    Marı́a Jesus Guardia, Eloy Garcı́a Calvo, Modeling of Escherichia coli growth and acetate formation under different operational conditions, Enzyme and Microbial Technology, 2001, 29, 6-7, 449

    CrossRef

  69. 69
    Thomas M. McCollom, Geochemical constraints on primary productivity in submarine hydrothermal vent plumes, Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47, 1, 85

    CrossRef

  70. 70
    U. von Stockar, J.-S. Liu, Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth, Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1999, 1412, 3, 191

    CrossRef

  71. 71
    Thomas M. McCollom, Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa, Journal of Geophysical Research: Planets (1991–2012), 1999, 104, E12
  72. 72
    Christer Larsson, Lena Gustafsson, From Macromolecules to Man, 1999,

    CrossRef

  73. 73
    R.B. Kemp, Y.H. Guan, From Macromolecules to Man, 1999,

    CrossRef

  74. 74
    Philippe Duboc, Ian Marison, Urs von Stockar, From Macromolecules to Man, 1999,

    CrossRef

  75. 75
    Paul A. del Giorgio, Jonathan J. Cole, BACTERIAL GROWTH EFFICIENCY IN NATURAL AQUATIC SYSTEMS, Annual Review of Ecology and Systematics, 1998, 29, 1, 503

    CrossRef

  76. 76
    Sheryl L. Stuart, Sandra L. Woods, Kinetic evidence for pentachlorophenol-dependent growth of a dehalogenating population in a pentachlorophenol- and acetate-fed methanogenic culture, Biotechnology and Bioengineering, 1998, 57, 4
  77. 77
    R.B. Kemp, Y. Guan, Probing the metabolism of genetically-engineered mammalian cells by heat flux, Thermochimica Acta, 1998, 309, 1-2, 63

    CrossRef

  78. 78
    Edwin H. Battley, On the thermodynamics of autotrophic and heterotrophic growth ofPseudomonas saccharophila, Canadian Journal of Microbiology, 1996, 42, 1, 38

    CrossRef

  79. 79
    M. Meier-Schneiders, F. Schäfer, Quantification of small enthalpic differences in anaerobic microbial metabolism—a calorimetry-supported approach, Thermochimica Acta, 1996, 275, 1, 1

    CrossRef

  80. 80
    Edwin H. Battley, A reevaluation of the thermodynamics of growth ofSaccharomyces cerevisiaeon glucose, ethanol, and acetic acid, Canadian Journal of Microbiology, 1995, 41, 4-5, 388

    CrossRef

  81. 81
    G.F. Andrews, Bioprocess optimization and control: Application of hybrid modelling (Schubert et al. J. Biotechnol. 35 (1994) 51–68), Journal of Biotechnology, 1995, 42, 3, 281

    CrossRef

  82. 82
    Philippe Duboc, Urs von Stockar, Energetic investigation of Saccharomyces cerevisiae during transitions. Part 2. Energy balance and thermodynamic efficiency, Thermochimica Acta, 1995, 251, 131

    CrossRef

  83. 83
    P Das, M N Karim, Mass balance and thermodynamic description of solid state fermentation of lignocellulosics byPleurotus ostreatus for animal feed production, Journal of Industrial Microbiology, 1995, 15, 1, 25

    CrossRef

  84. 84
    G. Andrews, Predicting yields for autotrophic and cometabolic processes, Applied Biochemistry and Biotechnology, 1995, 51-52, 1, 329

    CrossRef

  85. 85
    Natascha Schill, Urs von Stockar, Thermodynamic analysis of Methanobacterium thermoautotrophicum, Thermochimica Acta, 1995, 251, 71

    CrossRef

  86. 86
    L. Tijhuis, M. C. M. van Loosdrecht, J. J. Heijnen, Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors, Biotechnology and Bioengineering, 1994, 44, 5
  87. 87
    Sef J. Heijnen, Thermodynamics of microbial growth and its implications for process design, Trends in Biotechnology, 1994, 12, 12, 483

    CrossRef

  88. 88
    Armin Fiechter, Bernhard Sonnleitner, Advances in Microbial Physiology Volume 36, 1994,

    CrossRef

  89. 89
    Patrick N. Royce, A Discussion of Recent Developments in Fermentation Monitoring and Control from a Practical Perspective, Critical Reviews in Biotechnology, 1993, 13, 2, 117

    CrossRef

  90. 90
    L. Tijhuis, M. C. M. Van Loosdrecht, J. J. Heijnen, A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth, Biotechnology and Bioengineering, 1993, 42, 4
  91. 91
    J. A. Roels, Comments on “in search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms”, Biotechnology and Bioengineering, 1993, 42, 9
  92. 92
    J. J. Heijnen, J. P. van Dijken, Response to comments on “in search of a thermodynamic description of biomass yields for the chemotropic growth of microorganisms”, Biotechnology and Bioengineering, 1993, 42, 9
  93. 93
    U. von Stockar, I.W. Marison, The definition of energetic growth efficiencies for aerobic and anaerobic microbial growth and their determination by calorimetry and by other means, Thermochimica Acta, 1993, 229, 157

    CrossRef

  94. 94
    J. J. Hoijnen, M. C. M. van Loosdrecht, L. Tijhuis, A black box mathematical model to calculate auto- and heterotrophic biomass yields based on Gibbs energy dissipation, Biotechnology and Bioengineering, 1992, 40, 10
  95. 95
    Joseph J. Heijnen, Robbert Kleerebezem, Bioenergetics of Microbial Growth, Encyclopedia of Industrial Biotechnology,
  96. 96
    Microbial and Cellular Bioreactors,