- [1]
G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and A. Zhu, “Anonymizing Tables,” Proc. 10th Internat. Conf. on Database Theory (ICDT '05) (Edinburgh, UK, 2005), LNCS vol. 3363, pp. 246–258.

- [2]
M. Andrews, J. Cao, and J. McGowan, “Measuring Human Satisfaction in Data Networks,” Proc. 25th IEEE Internat. Conf. on Comput. Commun. (INFOCOM '06) (Oakland, CA, 2006).

- [3]
M. Barbaro and T. Zeller, “A Face Is Exposed for AOL Searcher No. 4417749,” New York Times, Aug. 9, 2006, p.A1, <http://www.nytimes.com/2006/08/09/technology/09aol.html?pagewanted=all&_r=0>. - [4]
R. J. Bayardo and R. Agrawal, “Data Privacy Through Optimal k-Anonymization,” Proc. 21st Internat. Conf. on Data Eng. (ICDE '05) (Tokyo, Jpn., 2005), pp. 217–228.

- [5]
R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta, “Discovering Frequent Patterns in Sensitive Data,” Proc. 16th ACM SIGKDD Internat. Conf. on Knowl. Discov. and Data Mining (KDD '10) (Washington, DC, 2010), pp. 503–512.

- [6]
J.-W. Byun, A. Kamra, E. Bertino, and N. Li, “Efficient k-Anonymization Using Clustering Techniques,” Proc. 12th Internat. Conf. on Database Syst. for Adv. Applic. (DASFAA '07) (Bangkok, Tha., 2007), LNCS vol. 4443, pp. 188–200.

- [7]
C. Dwork, “Differential Privacy,” Proc. 33rd Internat. Colloquium on Automata, Languages and Programming (ICALP '06) (Venice, Ita., 2006), LNCS vol. 4052, pp. 1–12.

- [8]
D. Feldman, A. Fiat, H. Kaplan, and K. Nissim, “Private Coresets,” Proc. 41st ACM Symp. on Theory of Comput. (STOC '09) (Bethesda, MD, 2009), pp. 361–370.

- [9]
A. E. Gelfand and A. F. M. Smith, “Sampling-Based Approaches to Calculating Marginal Densities,” J. Amer. Statist. Assoc., 85:410 (1990), 398–409. - [10]
N. Glady, B. Baesens, and C. Croux, “Modeling Churn Using Customer Lifetime Value,” Eur. J. Oper. Res., 197:1 (2009), 402–411. - [11]
J. Hadden, A. Tiwari, R. Roy, and D. Ruta, “Churn Prediction Using Complaints Data,” Internat. J. World Acad. Sci., Eng., Technol., 19 (2008), 809–814.

- [12]
G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright, “A Practical Differentially Private Random Decision Tree Classifier,” Proc. IEEE Internat. Conf. on Data Mining Workshops (ICDMW '09) (Miami, FL, 2009), pp. 114–121.

- [13]
D. R. Jeske, T. P. Callanan, and L. Guo, “Identification of Key Drivers of Net Promoter Score Using a Statistical Classification Model,” Efficient Decision Support Systems—Practice and Challenges from Current to Future (C. Jao, ed.), InTech, Rijeka, Cro., New York, 2011, Chapter 8.

- [14]
F. McSherry and R. Mahajan, “Differentially-Private Network Trace Analysis,” Proc. ACM SIGCOMM Conf. on Data Commun. (SIGCOMM '10) (New Delhi, Ind., 2010), pp. 123–134.

- [15]
A. Meyerson and R. Williams, “On the Complexity of Optimal k-Anonymity,” Proc. 23rd ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Syst. (PODS '04) (Paris, Fra., 2004), pp. 223–228.

- [16]
M. C. Mozer, R. Wolniewicz, D. B. Grimes, E. Johnson, and H. Kaushansky, “Predicting Subscriber Dissatisfaction and Improving Retention in the Wireless Telecommunications Industry,” IEEE Trans. Neural Networks, 11:3 (2000), 690–696. - [17]
A. Narayanan and V. Shmatikov, “Robust De-Anonymization of Large Sparse Datasets,” IEEE Symp. on Security and Privacy (SP '08) (Oakland, CA, 2008), pp. 111–125.

- [18]
F. Reichheld, The Ultimate Question: Driving Good Profits and True Growth, Harvard Business School Press, Boston, MA, 2006.

- [19]
Y. Richter, E. Yom-Tov, and N. Slonim, “Predicting Customer Churn in Mobile Networks Through Analysis of Social Groups,” Proc. SIAM Internat. Conf. on Data Mining (SDM '10) (Columbus, OH, 2010), pp. 732–741.

- [20]
S. Rosset, E. Neumann, U. Eick, and N. Vatnik, “Customer Lifetime Value Models for Decision Support,” Data Min. Knowl. Discov., 7:3 (2003), 321–339. - [21]
L. Sweeney, “k-Anonymity: A Model for Protecting Privacy,” Internat. J. Uncertain. Fuzziness Knowledge-Based Syst., 10:5 (2002), 557–570.