• 1
    T. W. Traut (2001) in Biographical Memoirs National Academy of Sciences, Vol. 79, National Academy Press, Washington, D. C. pp. 182201.
  • 2
    B. R. Singh (1999) A single protein research integrated advanced biochemistry laboratory course; spectroscopic determination of tyrosyl side chain pKa, Biochem. Educ. 27, 4144.
  • 3
    A. M. Rouhi (2000) The buzz about a remarkable enzyme, Chem. Eng. News 78, 4246.
  • 4
    G. Chin (2000) Editor's choice: highlights from the recent literature, Science 288, 401403.
  • 5
    J. Stubbe, L. N. Johnson (2000) Catalysis and regulation; clarity through structures, Curr. Opin. Struct. Biol. 10, 709710.
  • 6
    A. Warshel, J. Florian, M. Strabel, J. Villa (2001) Circe effect versus enzyme preorganization: what can be learned from the structure of the most proficient enzyme? ChemBioChem 2, 109111.
  • 7
    K. N. Houk, J. K. Lee, D. J. Tantillo, S. Bahmanyar, B. N. Hietbrink (2001) Crystal structures of orotidine monophosphate decarboxylase: does the structure reveal the mechanism of nature's most proficient enzyme? ChemBioChem 2, 113118.
  • 8
    H. H. Kimsey, D. Kaiser (1992) The orotidine-5′-monophosphate decarboxylase gene of Myxococcus xanthus. Comparison to the OMP decarboxylase gene family, J. Biol. Chem. 267, 819824.
  • 9
    A. Radzicka, R. Wolfenden (1995) A proficient enzyme, Science 267, 9093.
  • 10
    J. A. Smiley, K. M. Hay, B. S. Levison (2001) A re-examination of the substrate utilization of 2-thioorotidine-5′-monophosphate by yeast OMP decarboxylase, Bioorg. Chem. 29, 96106.
  • 11
    B. G. Miller, M. J. Snider, R. Wolfenden, S. A. Short (2001) Dissecting a charged network at the active site of orotidine-5′-phosphate decarboxylase, J. Biol. Chem. 276, 1517415176.
  • 12
    B. G. Miller, M. J. Snider, S. A. Short, R. Wolfenden (2000) Contribution of enzyme-phosphoribosyl contacts to catalysis by orotidine 5′-phosphate decarboxylase, Biochemistry 39, 81138118.
  • 13
    D. J. Porter, S. A. Short (2000) Yeast orotidine-5′-phosphate decarboxylase: steady-state and pre-steady-state analysis of the kinetic mechanism of substrate decarboxylation, Biochemistry 39, 1178811800.
  • 14
    M. A. Rishavy, W. W. Cleland (2000) Determination of the mechanism of orotidine-5′-monophosphate decarboxylase by isotope effects, Biochemistry 39, 45694574.
  • 15
    T. C. Appleby, C. Kinsland, T. P. Begley, S. E. Ealick (2000) The crystal structure and mechanism of orotidine-5′-monophosphate decarboxylase, Proc. Nat. Acad. Sci. U.S.A. 97, 20052010.
  • 16
    B. G. Miller, A. M. Hassell, R. Wolfenden, M. V. Milburn, S. A. Short (2000) Anatomy of a proficient enzyme: the structure of orotidine- 5′-monophosphate decarboxylase in the presence and absence of a potential transition state analog, Proc. Nat. Acad. Sci. U.S.A. 97, 20112016.
  • 17
    N. Wu, Y. Mo, J. Gao, E. F. Pai (2000) Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase, Proc. Nat. Acad. Sci. U.S.A. 97, 20172022.
  • 18
    P. Harris, J. C. Navarro-Poulsen, K. F. Jensen, S. Larsen (2000) Structural basis for the catalytic mechanism of a proficient enzyme: orotidine-5′-monophosphate decarboxylase, Biochemistry 39, 42174224.
  • 19
    W. Y. Feng, T. J. Austin, F. Chew, S. Gronert, W. Wu (2000) The mechanism of orotidine-5′-monophosphate decarboxylase: catalysis by destabilization of the substrate, Biochemistry 39, 17781783.
  • 20
    A. Warshel, M. Strajbl, J. Villa, J. Florian (2000) Remarkable rate enhancement of orotidine-5′-monophosphate decarboxylase is due to transition-state stabilization rather than to ground-state destabilization, Biochemistry 39, 1472814738.
  • 21
    D. A. Singelton, S. A. Merrigan, B. J. Kim, P. Beak, L. M. Phillips, J. K. Lee (2000) 13C kinetic isotope effects and the mechanism of the uncatalyzed decarboxylation of orotic acid, J. Am. Chem. Soc. 122, 32963300.
  • 22
    J. A. Smiley, L. Saleh (1999) Active site probes for yeast OMP decarboxylase: inhibition constants of UMP and thio-substituted UMP analogues and greatly reduced activity toward CMP-6-carboxylate, Bioorg. Chem. 27, 297306.
  • 23
    B. G. Miller, J. A. Smiley, S. A. Short, R. Wolfenden (1999) Activity of yeast orotidine-5′-phosphate decarboxylase in the absence of metals, J. Biol. Chem. 274, 2384123843.
  • 24
    J. I. Ehrlich, C.-C. Hwang, P. F. Cook, J. S. Blanchard (1999) Evidence for a stepwise mechanism of OMP decarboxylase, J. Am. Chem. Soc. 121, 69666967.
  • 25
    J. K. Lee, K. N. Houk (1997) A proficient enzyme revisited: the predicted mechanism for orotidine monophosphate decarboxylase, Science 276, 942945.
  • 26
    J. A. Smiley, S. J. Benkovic (1995) Expression of an orotate decarboxylating catalytic antibody confers 5-fluoro-orotate sensitivity to a pyrimidine auxotrophic Escherichia coli: an example of intracellular prodrug activation, J. Am. Chem. Soc. 117, 38773878.
  • 27
    J. A. Smiley, S. J. Benkovic (1994) Selection of catalytic antibodies for a biosynthetic reaction from a combinatorial cDNA library by complementation of an auxotrophic Escherichia coli: antibodies for orotate decarboxylation, Proc. Natl. Acad. Sci. U.S.A. 91, 83198323.
  • 28
    J. A. Smiley, M. E. Jones (1992) A unique catalytic and inhibitor-binding role for Lys93 of yeast orotidylate decarboxylase, Biochemistry 31, 1216212168.
  • 29
    K. Shostak, M. E. Jones (1992) Orotidylate decarboxylase: insights into the catalytic mechanism from substrate-specificity studies, Biochemistry 31, 1215512161.
  • 30
    J. A. Smiley, P. Paneth, M. H. O'Leary, J. B. Bell, M. E. Jones (1991) Investigation of the enzymatic mechanism of yeast orotidine-5′-monophosphate decarboxylase using C-13 kinetic isotope effects, Biochemistry 30, 62166223.
  • 31
    S. A. Acheson, J. B. Bell, M. E. Jones, R. Wolfenden (1990) Orotidine-5′-monophosphate decarboxylase catalysis: kinetic isotope effects and the state of hybridization of a bound transition-state analog, Biochemistry 29, 31983202.
  • 32
    H. L. Levine, R. S. Brody, F. H. Westheimer (1980) Inhibition of orotidine-5′-phosphate decarboxylase by 1-(5′-phospho-β-D-ribofuranosyl)barbituric acid, 6-azauridine 5′-phosphate, and uridine 5′-phosphate, Biochemistry 19, 49934999.
  • 33
    P. Beak, B. Siegel (1976) Mechanism of decarboxylation of 1,3-dimethylorotic acid. A model for orotidine-5′-phosphate decarboxylase, J. Am. Chem. Soc. 98, 36013606.
  • 34
    J. B. Bell, M. E. Jones (1991) Purification and characterization of yeast orotidine 5′-monophosphate decarboxylase overexpressed from plasmid pGU2, J. Biol. Chem. 266, 1266212667.
  • 35
    T. Ueda, M. Yamamoto, A. Yamane, M. Imazawa, H. Inoue (1978) Conversion of uridine nucleotides to the 6-cyano derivatives: synthesis of orotidylic acid, J. Carbohydr. 5, 261271.
  • 36
    S. F. Newbury, J. A. Glazebrook, A. Radford (1986) Sequence analysis of the pyr-4 (orotidine-5′-phosphate decarboxylase) gene of Neurospora crassa, Gene (Amst.) 43, 5158.
  • 37
    R. R. Alexander, J. M. Griffiths (1993) Basic Biochemical Methods, 2nd ed., Wiley-Liss, New York.
  • 38
    F. M.Ausubel, R.Brent, R. E.Kingston, D. D.Moore, J. G.Seidman, J. A.Smith, K.Struhl, Eds. (1994) Current Protocols in Molecular Biology, Greene Publishing Associates and John Wiley & Sons, Inc., New York.
  • 39
    R. S. Brody, F. H. Westheimer (1979) The purification of orotidine-5′-phosphate decarboxylase from yeast by affinity chromatography, J. Biol. Chem. 254, 42384244.
  • 40
    I. H. Segel (1975) Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems, John Wiley & Sons, Inc., New York, pp. 884926.
  • 41
    I. H. Segal (1975) Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems, John Wiley & Sons, Inc., New York, pp. 100160.