• 1
    A. L. Kruckeberg (1996) The hexose transporter family of Saccharomyces cerevisiae, Arch. Microbiol. 166, 283292.
  • 2
    H. Lund-Andersen (1979) Transport of glucose from blood to brain, Physiol. Rev. 59, 305352.
  • 3
    W. M. Pardridge (1983) Brain metabolism: a perspective from the blood-brain barrier, Physiol. Rev. 63, 14811535.
  • 4
    R. P. Ferraris (2001) Dietary and developmental regulation of intestinal sugar transport, Biochem. J. 360, 265276.
  • 5
    G. K. Brown (2000) Glucose transporters: structure, function and consequences of deficiency, J. Inherit. Metab. Dis. 23, 237246.
  • 6
    H. G. Joost, B. Thorens (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members, Mol. Membr. Biol. 18, 247256.
  • 7
    H. G. Joost, G. I. Bell, J. D. Best, M. J. Birnbaum, M. J. Charron, Y. T. Chen, H. Doege, D. E. James, H. F. Lodish, K. H. Moley, J. F. Moley, M. Mueckler, S. Rogers, A. Schurmann, S. Seino, B. Thorens (2002) Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators, Am. J. Physiol. 282, E974E976.
  • 8
    A. L. Olson, J. E. Pessin (1996) Structure, function, and regulation of the mammalian facilitative glucose transporter gene family, Annu. Rev. Nutr. 16, 235256.
  • 9
    T. Kayano, C. F. Burant, H. Fukumoto, G. W. Gould, Y. S. Fan, R. L. Eddy, M. G. Byers, T. B. Shows, S. Seino, G. I. Bell (1990) Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6), J. Biol. Chem. 265, 1327613282.
  • 10
    H. G. Joost, S. Wandel, A. Schurmann (1994) Structure-function relationship of glucose transporters catalyzing facilitated diffusion, Exp. Clin. Endocrinol. 102, 434438.
  • 11
    B. Thorens (1996) Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes, Am. J. Physiol. 270, G541G553.
  • 12
    M. Mueckler (1994) Facilitative glucose transporters, Eur. J. Biochem. 219, 713725.
  • 13
    M. P. Barrett, A. R. Walmsley, G. W. Gould (1999) Structure and function of facilitative sugar transporters, Curr. Opin. Cell Biol. 11, 496502.
  • 14
    M. C. Maiden, E. O. Davis, S. A. Baldwin, D. C. Moore, P. J. Henderson (1987) Mammalian and bacterial sugar transport proteins are homologous, Nature 325, 641643.
  • 15
    A. Schurmann, H. Doege, H. Ohnimus, V. Monser, A. Buchs, H. G. Joost (1997) Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function, Biochemistry 36, 1289712902.
  • 16
    M. J. Seatter, S. A. De la Rue, L. M. Porter, G. W. Gould (1998) QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site, Biochemistry 37, 13221326.
  • 17
    M. Mueckler (1990) Family of glucose-transporter genes. Implications for glucose homeostasis and diabetes, Diabetes 39, 611.
  • 18
    M. Aghayan, L. V. Rao, R. M. Smith, L. Jarett, M. J. Charron, B. Thorens, S. Heyner (1992) Developmental expression and cellular localization of glucose transporter molecules during mouse preimplantation development, Development 115, 305312.
  • 19
    A. Hogan, S. Heyner, M. J. Charron, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, B. Thorens, G. A. Schultz (1991) Glucose transporter gene expression in early mouse embryos, Development 113, 363372.
  • 20
    M. Pantaleon, M. B. Harvey, W. S. Pascoe, D. E. James, P. L. Kaye (1997) Glucose transporter GLUT3: ontogeny, targeting, and role in the mouse blastocyst, Proc. Natl. Acad. Sci. U.S.A. 94, 37953800.
  • 21
    M. M. Chi, J. Pingsterhaus, M. Carayannopoulos, K. H. Moley (2000) Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst, J. Biol. Chem. 275, 4025240257.
  • 22
    B. B. Kahn, L. Rossetti, H. F. Lodish, M. J. Charron (1991) Decreased in vivo glucose uptake but normal expression of GLUT1 and GLUT4 in skeletal muscle of diabetic rats, J. Clin. Investig. 87, 21972206.
  • 23
    A. Handberg, L. Kayser, P. E. Hoyer, J. Vinten (1992) A substantial part of GLUT-1 in crude membranes from muscle originates from perineurial sheaths, Am. J. Physiol. 262, E721E727.
  • 24
    A. Marette, J. M. Richardson, T. Ramlal, T. W. Balon, M. Vranic, J. E. Pessin, A. Klip (1992) Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle, Am. J. Physiol. 263, C443C452.
  • 25
    D. Dimitrakoudis, M. Vranic, A. Klip. (1992) Effects of hyperglycemia on glucose transporters of the muscle: use of the renal glucose reabsorption inhibitor phlorizin to control glycemia, J. Am. Soc. Nephrol. 3, 10781091.
  • 26
    B. A. Marshall, J. M. Ren, D. W. Johnson, E. M. Gibbs, J. S. Lillquist, W. C. Soeller, J. O. Holloszy, M. Mueckler (1993) Germline manipulation of glucose homeostasis via alteration of glucose transporter levels in skeletal muscle, J. Biol. Chem. 268, 1844218445.
  • 27
    J. M. Ren, B. A. Marshall, E. A. Gulve, J. Gao, D. W. Johnson, J. O. Holloszy, M. Mueckler (1993) Evidence from transgenic mice that glucose transport is rate-limiting for glycogen deposition and glycolysis in skeletal muscle, J. Biol. Chem. 268, 1611316115.
  • 28
    E. A. Gulve, J. M. Ren, B. A. Marshall, J. Gao, P. A. Hansen, J. O. Holloszy, M. Mueckler (1994) Glucose transport activity in skeletal muscles from transgenic mice overexpressing GLUT1. Increased basal transport is associated with a defective response to diverse stimuli that activate GLUT4, J. Biol. Chem. 269, 1836618370.
  • 29
    D. Dimitrakoudis, T. Ramlal, S. Rastogi, M. Vranic, A. Klip (1992) Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle, Biochem. J. 284, 341348.
  • 30
    D. R. Laybutt, A. L. Thompson, G. J. Cooney, E. W. Kraegen (1997) Selective chronic regulation of GLUT1 and GLUT4 content by insulin, glucose, and lipid in rat cardiac muscle in vivo, Am. J. Physiol. 273, H1309H1316.
  • 31
    E. B. Katz, A. E. Stenbit, K. Hatton, R. DePinho, M. J. Charron (1995) Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4, Nature 377, 151155.
  • 32
    J. W. Ryder, Y. Kawano, A. V. Chibalin, J. Rincon, T. S. Tsao, A. E. Stenbit, T. Combatsiaris, J. Yang, G. D. Holman, M. J. Charron, J. R. Zierath (1999) In vitro analysis of the glucose-transport system in GLUT4-null skeletal muscle, Biochem. J. 342, 321328.
  • 33
    B. Thorens, M. J. Charron, H. F. Lodish (1990) Molecular physiology of glucose transporters, Diabetes Care 13, 209218.
  • 34
    G. W. Gould, H. M. Thomas, T. J. Jess, G. I. Bell (1991) Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms, Biochemistry 30, 51395145.
  • 35
    M. Uldry, M. Ibberson, M. Hosokawa, B. Thorens (2002) GLUT2 is a high affinity glucosamine transporter, FEBS Lett. 524, 199203.
  • 36
    M. Hawkins, N. Barzilai, R. Liu, M. Hu, W. Chen, L. Rossetti (1997) Role of the glucosamine pathway in fat-induced insulin resistance, J. Clin. Investig. 99, 21732182.
  • 37
    M. Brownlee (2001) Biochemistry and molecular cell biology of diabetic complications, Nature 414, 813820.
  • 38
    C. Postic, R. Burcelin, F. Rencurel, J. P. Pegorier, M. Loizeau, J. Girard, A. Leturque (1993) Evidence for a transient inhibitory effect of insulin on GLUT2 expression in the liver: studies in vivo and in vitro, Biochem. J. 293, 119124.
  • 39
    M. T. Guillam, E. Hummler, E. Schaerer, J. I. Yeh, M. J. Birnbaum, F. Beermann, A. Schmidt, N. Deriaz, B. Thorens, J. Y. Wu (1997) Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2, Nat. Genet. 17, 327330.
  • 40
    P. R. Shepherd, G. W. Gould, C. A. Colville, S. C. McCoid, E. M. Gibbs, B. B. Kahn (1992) Distribution of GLUT3 glucose transporter protein in human tissues, Biochem. Biophys. Res. Commun. 188, 149154.
  • 41
    G. I. Bell, T. Kayano, J. B. Buse, C. F. Burant, J. Takeda, D. Lin, H. Fukumoto, S. Seino (1990) Molecular biology of mammalian glucose transporters, Diabetes Care 13, 198208.
  • 42
    G. I. Bell, C. F. Burant, J. Takeda, G. W. Gould (1993) Structure and function of mammalian facilitative sugar transporters, J. Biol. Chem. 268, 1916119164.
  • 43
    M. Grover-McKay, S. A. Walsh, S. A. Thompson (1999) Glucose transporter 3 (GLUT3) protein is present in human myocardium, Biochim. Biophys. Acta 1416, 145154.
  • 44
    I. Guillet-Deniau, A. Leturque, J. Girard (1994) Expression and cellular localization of glucose transporters (GLUT1, GLUT3, GLUT4) during differentiation of myogenic cells isolated from rat foetuses, J. Cell Sci. 107, 487496.
  • 45
    G. W. Gould, G. D. Holman (1993) The glucose transporter family: structure, function and tissue-specific expression, Biochem. J. 295, 329341.
  • 46
    C. A. Stuart, G. Wen, B. H. Peng, V. L. Popov, S. D. Hudnall, G. A. Campbell (2000) GLUT-3 expression in human skeletal muscle, Am. J. Physiol. 279, E855E861.
  • 47
    C. A. Stuart, G. Wen, W. C. Gustafson, E. A. Thompson (2000) Comparison of GLUT1, GLUT3, and GLUT4 mRNA and the subcellular distribution of their proteins in normal human muscle, Metabolism 49, 16041609.
  • 48
    M. J. Charron, F. C. Brosius III, S. L. Alper, H. F. Lodish (1989) A glucose transport protein expressed predominately in insulin-responsive tissues, Proc. Natl. Acad. Sci. U.S.A. 86, 25352539.
  • 49
    M. J. Birnbaum (1989) Identification of a novel gene encoding an insulin-responsive glucose transporter protein, Cell 57, 305315.
  • 50
    D. E. James, M. Strube, M. Mueckler (1989) Molecular cloning and characterization of an insulin-regulatable glucose transporter, Nature 338, 8387.
  • 51
    R. M. Smith, M. J. Charron, N. Shah, H. F. Lodish, L. Jarett (1991) Immunoelectron microscopic demonstration of insulin-stimulated translocation of glucose transporters to the plasma membrane of isolated rat adipocytes and masking of the carboxyl-terminal epitope of intracellular GLUT4, Proc. Natl. Acad. Sci. U.S.A. 88, 68936897.
  • 52
    G. D. Holman, I. V. Sandoval (2001) Moving the insulin-regulated glucose transporter GLUT4 into and out of storage, Trends Cell Biol. 11, 173179.
  • 53
    N. J. Bryant, R. Govers, D. E. James (2002) Regulated transport of the glucose transporter GLUT4, Nat. Rev. Mol. Cell. Biol. 3, 267277.
  • 54
    A. W. Kao, B. P. Ceresa, S. R. Santeler, J. E. Pessin (1998) Expression of a dominant interfering dynamin mutant in 3T3L1 adipocytes inhibits GLUT4 endocytosis without affecting insulin signaling, J. Biol. Chem. 273, 2545025457.
  • 55
    H. Al-Hasani, C. S. Hinck, S. W. Cushman (1998) Endocytosis of the glucose transporter GLUT4 is mediated by the GTPase dynamin, J. Biol. Chem. 273, 1750417510.
  • 56
    W. Omata, H. Shibata, Y. Suzuki, S. Tanaka, T. Suzuki, K. Takata, I. Kojima (1997) Subcellular distribution of GLUT4 in Chinese hamster ovary cells overexpressing mutant dynamin: evidence that dynamin is a regulatory GTPase in GLUT4 endocytosis, Biochem. Biophys. Res. Commun. 241, 401406.
  • 57
    S. Martin, J. Tellam, C. Livingstone, J. W. Slot, G. W. Gould, D. E. James (1996) The glucose transporter (GLUT-4) and vesicle-associated membrane protein-2 (VAMP-2) are segregated from recycling endosomes in insulin-sensitive cells, J. Cell Biol. 134, 625635.
  • 58
    J. E. Pessin, D. C. Thurmond, J. S. Elmendorf, K. J. Coker, S. Okada (1999) Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. Location! Location! Location!, J. Biol. Chem. 274, 25932596.
  • 59
    L. Sevilla, E. Tomas, P. Munoz, A. Guma, Y. Fischer, J. Thomas, B. Ruiz-Montasell, X. Testar, M. Palacin, J. Blasi, A. Zorzano (1997) Characterization of two distinct intracellular GLUT4 membrane populations in muscle fiber. Differential protein composition and sensitivity to insulin, Endocrinology 138, 30063015.
  • 60
    S. Corvera, A. Chawla, R. Chakrabarti, M. Joly, J. Buxton, M. P. Czech (1994) A double leucine within the GLUT4 glucose transporter COOH-terminal domain functions as an endocytosis signal, J. Cell Biol. 126, 979989.
  • 61
    C. C. Cain, W. S. Trimble, G. E. Lienhard (1992) Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes, J. Biol. Chem. 267, 1168111684.
  • 62
    S. Sumitani, T. Ramlal, R. Somwar, S. R. Keller, A. Klip (1997) Insulin regulation and selective segregation with glucose transporter-4 of the membrane aminopeptidase vp165 in rat skeletal muscle cells, Endocrinology 138, 10291034.
  • 63
    S. A. Ross, H. M. Scott, N. J. Morris, W. Y. Leung, F. Mao, G. E. Lienhard, S. R. Keller (1996) Characterization of the insulin-regulated membrane aminopeptidase in 3T3-L1 adipocytes, J. Biol. Chem. 271, 33283332.
  • 64
    C. C. Mastick, R. Aebersold, G. E. Lienhard (1994) Characterization of a major protein in GLUT4 vesicles. Concentration in the vesicles and insulin-stimulated translocation to the plasma membrane, J. Biol. Chem. 269, 60896092.
  • 65
    D. Malide, J. F. St.-Denis, S. R. Keller, S. W. Cushman (1997) Vp165 and GLUT4 share similar vesicle pools along their trafficking pathways in rat adipose cells, FEBS Lett. 409, 461468.
  • 66
    K. V. Kandror, P. F. Pilch (1994) gp160, a tissue-specific marker for insulin-activated glucose transport, Proc. Natl. Acad. Sci. U.S.A. 91, 80178021.
  • 67
    K. Kandror, P. F. Pilch (1994) Identification and isolation of glycoproteins that translocate to the cell surface from GLUT4-enriched vesicles in an insulin-dependent fashion, J. Biol. Chem. 269, 138142.
  • 68
    A. Volchuk, Q. Wang, H. S. Ewart, Z. Liu, L. He, M. K. Bennett, A. Klip (1996) Syntaxin 4 in 3T3-L1 adipocytes: regulation by insulin and participation in insulin-dependent glucose transport, Mol. Biol. Cell 7, 10751082.
  • 69
    A. L. Olson, J. B. Knight, J. E. Pessin (1997) Syntaxin 4, VAMP2, and/or VAMP3/cellubrevin are functional target membrane and vesicle SNAP receptors for insulin-stimulated GLUT4 translocation in adipocytes, Mol. Cell. Biol. 17, 24252435.
  • 70
    B. Cheatham, A. Volchuk, C. R. Kahn, L. Wang, C. J. Rhodes, A. Klip (1996) Insulin-stimulated translocation of GLUT4 glucose transporters requires SNARE-complex proteins, Proc. Natl. Acad. Sci. U.S.A. 93, 1516915173.
  • 71
    S. Rea, L. B. Martin, S. McIntosh, S. L. Macaulay, T. Ramsdale, G. Baldini, D. E. James (1998) Syndet, an adipocyte target SNARE involved in the insulin-induced translocation of GLUT4 to the cell surface, J. Biol. Chem. 273, 1878418792.
  • 72
    Thurmond, D. C., Ceresa, B. P., Okada, S., Elmendorf, J. S., Coker, K., and Pessin, J. E. (1998) Regulation of insulin-stimulated GLUT4 translocation by Munc18c in 3T3L1 adipocytes, J. Biol. Chem. 273, 3387633883.
  • 73
    D. C. Thurmond, M. Kanzaki, A. H. Khan, J. E. Pessin (2000) Munc18c function is required for insulin-stimulated plasma membrane fusion of GLUT4 and insulin-responsive amino peptidase storage vesicles, Mol. Cell. Biol. 20, 379388.
  • 74
    J. Min, S. Okada, M. Kanzaki, J. S. Elmendorf, K. J. Coker, B. P. Ceresa, L. J. Syu, Y. Noda, A. R. Saltiel, J. E. Pessin (1999) Synip: a novel insulin-regulated syntaxin 4-binding protein mediating GLUT4 translocation in adipocytes, Mol. Cell 3, 751760.
  • 75
    C. A. Baumann, A. R. Saltiel (2001) Spatial compartmentalization of signal transduction in insulin action, Bioessays 23, 215222.
  • 76
    H. Jiang, J. Li, E. B. Katz, M. J. Charron (2001) GLUT4 ablation in mice results in redistribution of IRAP to the plasma membrane, Biochem. Biophys. Res. Commun. 284, 519525.
  • 77
    A. Guma, J. R. Zierath, H. Wallberg-Henriksson, A. Klip (1995) Insulin induces translocation of GLUT-4 glucose transporters in human skeletal muscle, Am. J. Physiol. 268, E613E622.
  • 78
    A. Zorzano, P. Munoz, M. Camps, C. Mora, X. Testar, M. Palacin (1996) Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber. In search of GLUT4 trafficking pathways, Diabetes 45, Suppl. 1, S70S81.
  • 79
    L. J. Goodyear, M. F. Hirshman, R. Napoli, J. Calles, J. F. Markuns, O. Ljungqvist, E. S. Horton (1996) Glucose ingestion causes GLUT4 translocation in human skeletal muscle, Diabetes 45, 10511056.
  • 80
    J. W. Slot, H. J. Geuze, S. Gigengack, D. E. James, G. E. Lienhard. (1991) Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat, Proc. Natl. Acad. Sci. U.S.A. 88, 78157819.
  • 81
    R. Somwar, D. Y. Kim, G. Sweeney, C. Huang, W. Niu, C. Lador, T. Ramlal, A. Klip (2001) GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase, Biochem. J. 359, 639649.
  • 82
    J. R. Zierath, D. Galuska, L. A. Nolte, A. Thorne, J. S. Kristensen, H. Wallberg-Henriksson (1994) Effects of glycaemia on glucose transport in isolated skeletal muscle from patients with NIDDM: in vitro reversal of muscular insulin resistance, Diabetologia 37, 270277.
  • 83
    B. Vogt, C. Muhlbacher, J. Carrascosa, B. Obermaier-Kusser, E. Seffer, J. Mushack, D. Pongratz, H. U. Haring (1992) Subcellular distribution of GLUT 4 in the skeletal muscle of lean type 2 (non-insulin-dependent) diabetic patients in the basal state, Diabetologia 35, 456463.
  • 84
    J. W. Ryder, J. Yang, D. Galuska, J. Rincon, M. Bjornholm, A. Krook, S. Lund, O. Pedersen, H. Wallberg-Henriksson, J. R. Zierath, G. D. Holman (2000) Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients, Diabetes 49, 647654.
  • 85
    E. Carvalho, C. Rondinone, U. Smith (2000) Insulin resistance in fat cells from obese Zucker rats—evidence for an impaired activation and translocation of protein kinase B and glucose transporter 4, Mol. Cell. Biochem. 206, 716.
  • 86
    K. Hara, K. Yonezawa, H. Sakaue, A. Ando, K. Kotani, T. Kitamura, Y. Kitamura, H. Ueda, L. Stephens, T. R. Jackson, P. T. Hawkibs, R. Dhad, A. E. Clark, G. D. Holman, M. D. Waterfield, M. Kasuga (1994) 1-Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells, Proc. Natl. Acad. Sci. U.S.A. 91, 74157419.
  • 87
    T. Hayashi, M. F. Hirshman, E. J. Kurth, W. W. Winder, L. J. Goodyear (1998) Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport, Diabetes 47, 13691373.
  • 88
    M. Ponticos, Q. L. Lu, J. E. Morgan, D. G. Hardie, T. A. Partridge, D. Carling (1998) Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle, EMBO J. 17, 16881699.
  • 89
    L. Coderre, K. V. Kandror, G. Vallega, P. F. Pilch (1995) Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle, J. Biol. Chem. 270, 2758427588.
  • 90
    S. A. Hawley, M. A. Selbert, E. G. Goldstein, A. M. Edelman, D. Carling, D. G. Hardie (1995) 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms, J. Biol. Chem. 270, 2718627191.
  • 91
    S. P. Davies, N. R. Helps, P. T. Cohen, D. G. Hardie (1995) 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C α and native bovine protein phosphatase-2AC, FEBS Lett. 377, 421425.
  • 92
    W. W. Winder, D. G. Hardie (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes, Am. J. Physiol. 277, E1E10.
  • 93
    C. A. Hutber, D. G. Hardie, W. W. Winder (1997) Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase, Am. J. Physiol. 272, E262E266.
  • 94
    W. W. Winder, D. G. Hardie (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise, Am. J. Physiol. 270, E299E304.
  • 95
    L. J. Goodyear (2000) AMP-activated protein kinase: a critical signaling intermediary for exercise-stimulated glucose transport?, Exerc. Sport Sci. Rev. 28, 113116.
  • 96
    J. Mu, J. T. Brozinick, Jr., O. Valladares, M. Bucan, M. J. Birnbaum (2001) A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle, Mol. Cell 7, 10851094.
  • 97
    B. Viollet, F. Andreelli, S. B. Jorgensen, C. Perrin, D. Flamez, J. Mu, J. F. Wojtaszewski, F. C. Schuit, M. Birnbaum, E. Richter, R. Burcelin, S. Vaulont (2003) Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models, Biochem. Soc. Trans. 31, 216219.
  • 98
    L. G. Fryer, E. Hajduch, F. Rencurel, I. P. Salt, H. S. Hundal, D. G. Hardie, D. Carling (2000) Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase, Diabetes 49, 19781985.
  • 99
    L. J. Ignarro (1989) Endothelium-derived nitric oxide: actions and properties, FASEB J. 3, 3136.
  • 100
    L. J. McDonald, F. Murad (1996) Nitric oxide and cyclic GMP signaling, Proc. Soc. Exp. Biol. Med. 211, 16.
  • 101
    M. E. Young, G. K. Radda, B. Leighton (1997) Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro, Biochem. J. 322, 223228.
  • 102
    R. Shafiee-Nick, N. J. Pyne, B. L. Furman (1995) Effects of type-selective phosphodiesterase inhibitors on glucose-induced insulin secretion and islet phosphodiesterase activity, Br. J. Pharmacol. 115, 14861492.
  • 103
    G. J. Etgen, Jr., D. A. Fryburg, E. M. Gibbs (1997) Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway, Diabetes 46, 19151919.
  • 104
    J. W. Kennedy, M. F. Hirshman, E. V. Gervino, J. V. Ocel, R. A. Forse, S. J. Hoenig, D. Aronson, L. J. Goodyear, E. S. Horton (1999) Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes, Diabetes 48, 11921197.
  • 105
    J. R. Zierath, T. S. Tsao, A. E. Stenbit, J. W. Ryder, D. Galuska, M. J. Charron (1998) Restoration of hypoxia-stimulated glucose uptake in GLUT4-deficient muscles by muscle-specific GLUT4 transgenic complementation, J. Biol. Chem. 273, 2091020915.
  • 106
    A. Marette, D. Dimitrakoudis, Q. Shi, C. D. Rodgers, A. Klip, M. Vranic (1999) Glucose rapidly decreases plasma membrane GLUT4 content in rat skeletal muscle, Endocrine 10, 1318.
  • 107
    T. S. Tsao, R. Burcelin, E. B. Katz, L. Huang, M. J. Charron (1996) Enhanced insulin action due to targeted GLUT4 overexpression exclusively in muscle, Diabetes 45, 2836.
  • 108
    M. J. Charron, E. B. Katz, A. L. Olson (1999) GLUT4 gene regulation and manipulation, J. Biol. Chem. 274, 32533256.
  • 109
    S. Ikemoto, K. S. Thompson, M. Takahashi, H. Itakura, M. D. Lane, O. Ezaki (1995) High fat diet-induced hyperglycemia: prevention by low level expression of a glucose transporter (GLUT4) minigene in transgenic mice, Proc. Natl. Acad. Sci. U.S.A. 92, 30963099.
  • 110
    E. D. Abel, H. C. Kaulback, R. Tian, J. C. Hopkins, J. Duffy, T. Doetchman, T. Minnemann, M. E. Boers, E. Hadro, C. Oberste-Berghaus, W. Quist, B. B. Lowell, J. S. Ingwall, B. B. Kahn (1999) Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart, J. Clin. Investig. 104, 17031714.
  • 111
    E. D. Abel, O. Peroni, J. K. Kim, Y. B. Kim, O. Boss, E. Hardo, T. Minnemann, G. I. Shulman, B. B. Kahn (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver, Nature 409, 729733.
  • 112
    A. Zisman, O. D. Peroni, E. D. Abel, M. D. Michael, F. Mauvais-Jarvis, B. B. Lowell, J. F. Wojtaszewski, M. F. Hirshman, A. Virkamaki, L. J. Goodyear, C. R. Kahn, B. B. Kahn (2000) Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance, Nat. Med. 6, 924928.
  • 113
    A. E. Stenbit, T. S. Tsao, J. Li, R. Burcelin, D. L. Geenen, S. M. Factor, K. Houseknecht, E. B. Katz, M. J. Charron (1997) GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes, Nat. Med. 3, 10961101.
  • 114
    T. S. Tsao, A. E. Stenbit, J. Li, K. L. Houseknecht, J. R. Zierath, E. B. Katz, M. J. Charron (1997) Muscle-specific transgenic complementation of GLUT4-deficient mice. Effects on glucose but not lipid metabolism, J. Clin. Investig. 100, 671677.
  • 115
    T. S. Tsao, A. E. Stenbit, S. M. Factor, W. Chen, L. Rossetti, M. J. Charron (1999) Prevention of insulin resistance and diabetes in mice heterozygous for GLUT4 ablation by transgenic complementation of GLUT4 in skeletal muscle, Diabetes 48, 775782.
  • 116
    A. E. Stenbit, R. Burcelin, E. B. Katz, T. S. Tsao, N. Gautier, M. J. Charron, Y. Le Marchand-Brustel (1996) Diverse effects of Glut 4 ablation on glucose uptake and glycogen synthesis in red and white skeletal muscle, J. Clin. Investig. 98, 629634.
  • 117
    K. Inukai, H. Katagiri, K. Takata, T. Asano, M. Anai, H. Ishihara, M. Nakazaki, M. Kikuchi, Y. Yazaki, Y. Oka (1995) Characterization of rat GLUT5 and functional analysis of chimeric proteins of GLUT1 glucose transporter and GLUT5 fructose transporter, Endocrinology 136, 48504857.
  • 118
    S. J. Blakemore, J. C. Aledo, J. James, F. C. Campbell, J. M. Lucocq, H. S. Hundal (1995) The GLUT5 hexose transporter is also localized to the basolateral membrane of the human jejunum, Biochem. J. 309, 712.
  • 119
    C. F. Burant, J. Takeda, E. Brot-Laroche, G. I. Bell, N. O. Davidson (1992) Fructose transporter in human spermatozoa and small intestine is GLUT5, J. Biol. Chem. 267, 1452314526.
  • 120
    F. Darakhshan, E. Hajduch, S. Kristiansen, E. A. Richter, H. S. Hundal (1998) Biochemical and functional characterization of the GLUT5 fructose transporter in rat skeletal muscle, Biochem. J. 336, 361366.
  • 121
    P. R. Shepherd, E. M. Gibbs, C. Wesslau, G. W. Gould, B. B. Kahn (1992) Human small intestine facilitative fructose/glucose transporter (GLUT5) is also present in insulin-responsive tissues and brain. Investigation of biochemical characteristics and translocation, Diabetes 41, 13601365.
  • 122
    H. S. Hundal, A. Ahmed, A. Guma, Y. Mitsumoto, A. Marette, M. J. Rennie, A. Klip (1992) Biochemical and immunocytochemical localization of the ‘GLUT5 glucose transporter’ in human skeletal muscle, Biochem. J. 286, 339343.
  • 123
    I. I. Concha, F. V. Velasquez, J. M. Martinez, C. Angulo, A. Droppelmann, A. M. Reyes, J. C. Slebe, J. C. Vera, D. W. Golde (1997) Human erythrocytes express GLUT5 and transport fructose, Blood 89, 41904195.
  • 124
    J. R. Zierath, L. A. Nolte, E. Wahlstrom, D. Galuska, P. R. Shepherd, B. B. Kahn, H. Wallberg-Henriksson (1995) Carrier-mediated fructose uptake significantly contributes to carbohydrate metabolism in human skeletal muscle, Biochem. J. 311, 517521.
  • 125
    H. S. Hundal, F. Darakhshan, S. Kristiansen, S. J. Blakemore, E. A. Richter (1998) GLUT5 expression and fructose transport in human skeletal muscle, Adv. Exp. Med. Biol. 441, 3545.
  • 126
    C. P. Corpe, F. J. Bovelander, C. M. Munoz, J. H. Hoekstra, I. A. Simpson, O. Kwon, M. Levine, C. F. Burant (2002) Cloning and functional characterization of the mouse fructose transporter, GLUT5, Biochim. Biophys. Acta 1576, 191197.
  • 127
    S. Kristiansen, F. Darakhshan, E. A. Richter, H. S. Hundal (1997) Fructose transport and GLUT-5 protein in human sarcolemmal vesicles, Am. J. Physiol. 273, E543E548.
  • 128
    K. Miyamoto, S. Tatsumi, A. Morimoto, H. Minami, H. Yamamoto, K. Sone, Y. Taketani, Y. Nakabou, T. Oka, E. Takeda (1994) Characterization of the rabbit intestinal fructose transporter (GLUT5), Biochem. J. 303, 877883.
  • 129
    J. Yang, J. Dowden, A. Tatibouet, Y. Hatanaka, G. D. Holman (2002) Development of high affinity ligands and photoaffinity labels for the D-fructose transporter GLUT5, Biochem. J. 367, 533539.
  • 130
    H. Doege, A. Bocianski, H. G. Joost, A. Schurmann (2000) Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leukocytes, Biochem. J. 350, 771776.
  • 131
    I. Lisinski, A. Schurmann, H. G. Joost, S. W. Cushman, H. Al-Hasani (2001) Targeting of GLUT6 (formerly GLUT9) and GLUT8 in rat adipose cells, Biochem. J. 358, 517522.
  • 132
    M. Ibberson, M. Uldry, B. Thorens (2000) GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin-sensitive tissues, J. Biol. Chem. 275, 46074612.
  • 133
    H. Doege, A. Schurmann, G. Bahrenberg, A. Brauers, H. G. Joost (2000) GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity, J. Biol. Chem. 275, 1627516280.
  • 134
    M. O. Carayannopoulos, M. M. Chi, Y. Cui, J. M. Pingsterhaus, R. A. McKnight, M. Mueckler, S. U. Devaskar, K. H. Moley (2000) GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst, Proc. Natl. Acad. Sci. U.S.A. 97, 73137318.
  • 135
    L. P. Reagan, N. Gorovits, E. K. Hoskin, S. E. Alves, E. B. Katz, C. A. Grillo, G. G. Piroli, B. S. McEwen, M. J. Charron (2001) Localization and regulation of GLUTx1 glucose transporter in the hippocampus of streptozotocin diabetic rats, Proc. Natl. Acad. Sci. U.S.A. 98, 28202825.
  • 136
    L. P. Reagan, D. R. Rosell, S. E. Alves, E. K. Hoskin, A. L. McCall, M. J. Charron, B. S. McEwen (2002) GLUT8 glucose transporter is localized to excitatory and inhibitory neurons in the rat hippocampus, Brain Res. 932, 129134.
  • 137
    A. Scheepers, H. Doege, H. G. Joost, A. Schurmann (2001) Mouse GLUT8: genomic organization and regulation of expression in 3T3-L1 adipocytes by glucose, Biochem. Biophys. Res. Commun. 288, 969974.
  • 138
    A. Schurmann, H. Axer, A. Scheepers, H. Doege, H. G. Joost (2002) The glucose transport facilitator GLUT8 is predominantly associated with the acrosomal region of mature spermatozoa, Cell Tissue Res. 307, 237242.
  • 139
    G. G. Piroli, C. A. Grillo, E. K. Hoskin, V. Znamensky, E. B. Katz, T. A. Milner, B. S. McEwen, M. J. Charron, L. P. Reagan (2002) Peripheral glucose administration stimulates the translocation of GLUT8 glucose transporter to the endoplasmic reticulum in the rat hippocampus, J. Comp. Neurol. 452, 103114.
  • 140
    A. B. Pinto, M. O. Carayannopoulos, A. Hoehn, L. Dowd, K. H. Moley (2002) Glucose transporter 8 expression and translocation are critical for murine blastocyst survival, Biol. Reprod. 66, 17291733.
  • 141
    N. Gorovits, L. Cui, J. V. Busik, M. Ranalletta, S. Hauguel de-Mouzon, M. J. Charron (2003) Regulation of hepatic GLUT8 in normal and diabetic models, Endocrinology 144, 17031711.
  • 142
    J. E. Phay, H. B. Hussain, J. F. Moley (2000) Cloning and expression analysis of a novel member of the facilitative glucose transporter family, SLC2A9 (GLUT9), Genomics 66, 217220.
  • 143
    P. A. Dawson, J. C. Mychaleckyj, S. C. Fossey, S. J. Mihic, A. L. Craddock, D. W. Bowden (2001) Sequence and functional analysis of GLUT10: a glucose transporter in the type 2 diabetes-linked region of chromosome 20q12–13.1, Mol. Genet. Metab. 74, 186199.
  • 144
    A. J. McVie-Wylie, D. R. Lamson, Y. T. Chen (2001) Molecular cloning of a novel member of the glut family of transporters, slc2a10 (glut10), localized on chromosome 20q13.1: a candidate gene for niddm susceptibility, Genomics 72, 113117.
  • 145
    H. Doege, A. Bocianski, A. Scheepers, H. Axer, J. Eckel, H. G. Joost, A. Schurmann (2001) Characterization of human glucose transporter (GLUT) 11 (encoded by SLC2A11), a novel sugar-transport facilitator specifically expressed in heart and skeletal muscle, Biochem. J. 359, 443449.
  • 146
    S. Rogers, M. L. Macheda, S. E. Docherty, M. D. Carty, M. A. Henderson, W. C. Soeller, E. M. Gibbs, D. E. James, J. D. Best (2002) Identification of a novel glucose transporter-like protein-GLUT-12, Am. J. Physiol. 282, E733E738.