• 1
    L. J. Henderson (1928) Blood, a Study of General Physiology, Silliman Lectures, Yale University Press, New Haven, CT.
  • 2
    W. M. Clark (1960) Oxidation Reduction Potentials of Organic Systems, Williams and Wilkins Co., Baltimore, MD.
  • 3
    H. A. Krebs, H. Kornberg, K. Burton (1957) Energy transformations in living matter. Springer-Verlag, Berlin, MD.
  • 4
    P. Borst (1963) in Funktionelle un Morphologische Oraganisation der Zelle (P.Karlson, ed.) pp. 137, Springer-Verlag, Berlin.
  • 5
    H. Holzer, G. Schultz, F. Lynen, (1956) Bestimmung des quotienten DPNH/DPN in lebenden hefezellen durch analyse stationarer alkohol und acetaldehyde konzentrationen, Biochem. Z. 332, 252263.
  • 6
    T. H. Bücher, M. Klingenberg (1958) Wege des Wasserstoffs inder lebendigen Organisation, Angew. Chem. 70, 552570.
  • 7
    L. F. Holmes (1991) Hans Krebs, the Formation of a Scientific Life, Oxford University Press, Oxford.
  • 8
    H. A. Krebs (1981) Hans Krebs: Reminiscences and Reflections, Clarendon Press, Oxford.
  • 9
    D. H. Williamson, P. Lund, H. A. Krebs (1967) The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver, Biochem. J. 103, 514527.
  • 10
    R. L. Veech, L. V. Eggleston, H. A. Krebs (1969) The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver, Biochem. J. 115, 609619.
  • 11
    R. L. Veech, D. N. Gates, C. W. Crutchfield, W. L. Gitomer, Y. Kashiwaya, M. T. King, R. Wondergem (1994) Metabolic hyperpolarization of liver by ethanol: The importance of Mg2+ and H+ in determining impermeant intracellular anionic charge and energy of metabolic reactions, Alcohol. Clin. Exp. Res. 18, 10401056.
  • 12
    D. Veloso, R. W. Guynn, M. Oskarsson, R. L. Veech (1973) The concentrations of free and bound magnesium in rat tissues. Relative constancy of free Mg2+ concentrations, J. Biol. Chem. 248, 48114819.
  • 13
    N. W. Cornell, M. Leadbetter, R. L. Veech (1979) Effects of free magnesium concentration and ionic strength on equilibrium constants for the glyceraldehyde phosphate dehydrogenase and phosphoglycerate kinase reactions, J. Biol. Chem. 254, 65226527.
  • 14
    J. C. Londesborough, K. Dalziel (1968) The equilibrium constant of the isocitrate dehydrogenase reaction, Biochem. J 110, 217222.
  • 15
    R. H. Villet, K. Dalziel (1969) The nature of the carbon dioxide substrate and equilibrium constant of the 6-phosphogluconate dehydrogenase reaction, Biochem. J 115, 633638.
  • 16
    R. W. Guynn, H. J. Gelberg, R. L. Veech (1973) Equilibrium constants of the malate dehydrogenase, citrate synthase, citrate lyase, and acetyl coenzyme A hydrolysis reactions under physiological conditions, J. Biol. Chem. 248, 69576965.
  • 17
    W. Russman (1967) Dissertation Munchen, Dissertation.
  • 18
    P. C. Engle, K. Dalziel (1967) The equilibrium constants of the glutamate dehydrogenase systems, Biochem. J 105, 691695.
  • 19
    H. A. Krebs R. L. Veech (1969) in The Energy Level and Metabolic Control in Mitochondria (S.Papa, J. M.Tager, E.Quagliariello, E. C.Slater, eds.) Pyridine nucleotide interrelations, pp. 329382, Adriatica Editrice, Bari, Italy.
  • 20
    J. P. Casazza, R. L. Veech (1986) The interdependence of glycolytic and pentose cycle intermediates in ad libitum fed rats, J. Biol. Chem. 261, 690698.
  • 21
    R. L. Veech (2003) A humble hexose monophosphate pathway metabolite regulates short- and long term control of lipogenesis, Proc. Natl. Acad. Sci. U S A. 100, 55785580.
  • 22
    H. A. Krebs, K. Henseleit (1932) Untersuchungen uber die harnstoffbildung im tierkopper, Hope-Seyler's Z. Physiol. Chem. 210, 3366.
  • 23
    H. A. Krebs, W. A. Johnson (1937) The role of citric acid in intermediate metabolism in animal tissues, Enzymologia 4, 148156.
  • 24
    H. A. Krebs, R. L. Veech (1969) in Mitochondria: Structure and Function (L.Ernster, and Z.Drohota, eds.) Interrelations between diphospho- and triphospho-pyridine nucleotides, pp. 101110, Academic Press, New York.
  • 25
    R. L. Veech, L. Raijman, K. Dalziel, H. A. Krebs (1969) Disequilibrium in the triose phosphate isomerase system in rat liver, Biochem. J. 115, 837842.
  • 26
    R. A. Alberty (1969) Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates, J. Biol. Chem. 244, 32903302.
  • 27
    M. Walser (1971) in Symposium International sur le Deficit Magnesium in Pathologic Humaine (J.Durlach, ed) Symposium International sur le Deficit Magnesium in Pathologic Humaine, op. 55–63, SGEVM, Vittel, Belgium.
  • 28
    J. W. R. Lawson, R. L. Veech (1979) Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions, J. Biol. Chem. 254, 65286537.
  • 29
    J. W. R. Lawson, R. W. Guynn, N. W. Cornell, R. L. Veech (1976) in Gluconeogenesis, Its Regulation in Mammalian Species (R. W.Hanson, M. A.Mehlman, eds.) A possible role for pyrophosphate in the control of hepatic metabolism, pp. 481514, John Wiley & Sons: New York.
  • 30
    R. W. Guynn, R. L. Veech (1973) The equilibrium constants of the adenosine triphosphate hydrolysis and the adenosine triphosphate-citrate lyase reactions, J. Biol. Chem. 248, 69666972.
  • 31
    R. W. Guynn, L. T. Webster, Jr., R. L. Veech (1974) Equilibrium constants of the reactions of acetyl coenzyme A synthetase and the hydrolysis of adenosine triphosphate to adenosine monophosphate and inorganic pyrophosphate, J. Biol. Chem. 249, 32483254.
  • 32
    R. L. Veech, J. W. R. Lawson, N. W. Cornell, H. A. Krebs (1979) Cytosolic phosphorylation potential, J. Biol. Chem. 254, 65386547.
  • 33
    E. Y. Sako, P. B. Kingsley-Hickman, A. H. From, J. E. Foker, K. Ugurbil (1988) ATP synthesis kinetics and mitochondrial function in the postischemic myocardium as studied by 31P NMR, J. Biol. Chem. 263, 1060010607.
  • 34
    K. Ugurbil, M. Petein, R. Maidan, S. Michurski, A. H. From (1986) Measurement of an individual rate constant in the presence of multiple exchanges: Application to myocardial creatine kinase reaction, Biochemistry 25, 100107.
  • 35
    E. A. Dawes (1965) Quantitative Problems in Biochemistry. E. & S. Livingstone, Edinburgh and London.
  • 36
    T. Masuda, G. Dobson, R. L. Veech (1990) The Gibbs-Donnan near-equilibrium system of heart, J. Biol. Chem. 265, 2032120334.
  • 37
    R. L. Veech, Y. Kashiwaya, D. N. Gates, M. T. King, K. Clarke (2002) The energetics of ion distribution: the origin of the resting electric potential of cells, IUBMB Life 54, 241252.
  • 38
    H. Tabor, S. M. Rosenthal (1945) Effects of potassium administration, of sodium loss, and fluid loss in tourniquet shock, Public Health Rep. 60, 401419.
  • 39
    O. E. Owen, A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, G. F. Cahill, Jr. (1967) Brain metabolism during fasting, J. Clin. Investig. 46, 15891595.
  • 40
    Y. Kashiwaya, K. Sato, N. Tsuchiya, S. Thomas, D. A. Fell, R. L. Veech, J. V. Passonneau (1994) Control of glucose utilization in working perfused rat heart, J. Biol. Chem. 269, 2550225514.
  • 41
    K. Sato, Y. Kashiwaya, C. A. Keon, N. Tsuchiya, M. T. King, G. K. Radda, B. Chance, K. Clarke, R. L. Veech (1995) Insulin, ketone bodies, and mitochondrial energy transduction, FASEB J. 9, 651658.
  • 42
    P. Mitchell (1968) Chemiosmotic Coupling and Energy Transduction, Glynn Research Ltd., Bodmin, UK
  • 43
    C. Gibbons, M. G. Montgomery, A. G. W. Leslie, J. E. Walker (2000) The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution, Nat. Struct. Biol. 7, 10551061.
  • 44
    K. Yasuda, H. Noji, K. Kinosita, Jr., M. Yoshida (1998) F1-ATPase is a highly efficient molecular motor that rotates with discrete 120o steps, Cell 93, 11171124.
  • 45
    B. Reynafarje, M. D. Brand, A. L. Lehninger (1976) Evaluation of the H+/site ratio of mitochondrial electron transport from rate measurements, J. Biol. Chem. 251, 74427451.
  • 46
    H. J. Morowitz, J. D. Kostelnik, J. Yang, G. D. Cody (2000) The origin of intermediary metabolism, Proc. Natl. Acad. Sci. U S A. 97, 77047708.
  • 47
    F. Mochel, P. DeLonlay, G. Touati, H. Brunengraber, R. P. Kinman, D. Rabier, C. R. Roe, J. M. Saudubray (2005) Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy, Mol. Genet. Metab 84, 305312.
  • 48
    J. Rutter, M. Reick, L. C. Wu, S. L. McKnight (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors, Science 293, 510514.
  • 49
    S. J. Lin E. Ford, M. Haigis, G. Liszt, L. Guarente (2004) Calorie restriction extends yeast life span by lowering the level of NADH, Genes Dev. 18, 1216.
  • 50
    M. Fulco, R. L. Schiltz, S. Iezzi, M. T. King, P. Zhao, Y. Kashiwaya, E. Hoffman, R. L. Veech, V. Sartorelli (2003) Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state, Mol. Cell 12, 5162.
  • 51
    Q. Zhang, D. W. Piston, R. H. Goodman (2002) Regulation of Corepressor Function by Nuclear NADH, Science 295, 18951897.
  • 52
    J. W. Gibbs (1875) On the equilibrium of heterogeneous substances, Trans. Conn. Acad. Arts Sci. 3, 108248 343–524.
  • 53
    J. C. Melrose (2005) The reception of Gibbsian thermodynamics in early physical chemistry, Southwest Retort 58, 510.
  • 54
    J. M. Freeman, E. P. G. Vining (1992) Intractable epilepsy, Epilepsia 33, 11321136.
  • 55
    R. L. Veech, B. Chance, Y. Kashiwaya, H. A. Lardy, G. F. Cahill, Jr. (2001) Ketone bodies, potential therapeutic uses, IUBMB Life 51, 241247.
  • 56
    R. L. Veech (2004) The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological conditions: ketosis, Ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism, Prostaglandins Leukot. Essent. Fatty Acids 70, 309319.
  • 57
    Y. Kashiwaya, M. T. King, R. L. Veech (1997) Substrate signaling by insulin: a ketone bodies ratio mimics insulin action in heart, Am. J. Cardiol. 80, 50A64A.
  • 58
    Y. Kashiwaya, T. Takeshima, N. Mori, K. Nakashima, K. Clarke, R. L. Veech (2000) d-beta-Hydroxybutyrate protects neurons in models of Alzheimer's and Parkinson's disease, Proc. Natl. Acad. Sci. U S A. 97, 54405444.
  • 59
    B. Chance, H. Sies, A. Boveris, (1979) Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59, 527605.
  • 60
    D. F. Rolfe, A. J. Hulbert, M. D. Brand (1994) Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat, Biochim. Biophys. Acta 1188, 405416.
  • 61
    A. K. Taggart, J. Kero, X. Gan, T. Q. Cai, K. Cheng, M. Ippolito, N. Ren, R. Kaplan, K. Wu, T. J. Wu, L. Jin, C. Liaw, R. Chen, J. Richman, D. Connolly, S. Offermanns, S. D. Wright, M. G. Waters (2005) (D)-beta-hydroxybutyrate Inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G, J. Biol. Chem. 280, 2664926652.
  • 62
    S. Tunaru, J. Kero, A. Schaub, C. Wufka, A. Blaukat, K. Pfeffer, S. Offermanns (2003) PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect, Nat. Med. 9, 352355.
  • 63
    M. Stubbs-Spry (1971), thesis, Oxford University.
  • 64
    E. M. Scott, I. W. Duncan, V. Ekstrand (1963) J. Biol. Chem. 238, 39283933.
  • 65
    T. W. Rall, A. Lehninger (1952) J. Biol. Chem. 194, 119130.
  • 66
    M. M. P. Muir, The elements of thermal chemistry, 1885, quoted in J. C. Melrose Southwestern Retort (2005) 58, 510.