SEARCH

SEARCH BY CITATION

References

  • 1
    Adams, D. J. (2009) Current trends in laboratory class teaching in university bioscience programmes. Biosci. Educ. 13, 113.
  • 2
    Lopatto, D. (2004) Survey of undergraduate research experiences (SURE): First findings. Life Sci. Educ. 3, 270277.
  • 3
    Stryer, L., Breslow, R., Gentile, J., Hillis, D., Hopfield, J., Kopell, N., Long, S., Penhoet, E., Steitz, J., Stevens, C., and Ward, S. (2003) Bio 2010: Transforming Undergraduate Education for Future Research Biologists, National Academies Press, Washington, DC.
  • 4
    Weaver, G. C., Russell, C. B., and Wink, D. J. (2008) Inquiry-based and research-based laboratory pedagogies in undergraduate science. Nat. Chem. Biol. 4, 577580.
  • 5
    Bednarski, A. E., Elgin, S. C. R., and Pakrasi, H. B. (2005) An inquiry into protein structure and genetic disease: Introducing undergraduates to bioinformatics in a large introductory course. Cell Biol. Educ. 4, 207220.
  • 6
    Boyle, J. A. (2004) Bioinformatics in undergraduate education: Practical examples. Biochem. Mol. Biol. Educ. 32, 236238.
  • 7
    Brame, C. J., Pruitt, W. M., and Robinson, L. C. (2008) A molecular genetics laboratory course applying bioinformatics and cell biology in the context of original research. CBE-Life Sci. Educ. 7, 410421.
  • 8
    Centeno, N. B., Villa-Frexia, J., and Olivia, B. (2003) Teaching structural bioinformatics at the undergraduate level. Biochem. Mol. Biol. Educ. 31, 386391.
  • 9
    Chapman, B. S., Christmann, J. L., and Thatcher, E. F. (2006) Bioinformatics for undergraduates: Steps toward a quantitative bioscience curriculum. Biochem. Mol. Biol. Educ. 34, 180186.
  • 10
    Cohen, J. (2003) Guidelines for establishing undergraduate bioinformatics courses. J. Sci. Educ. Technol. 12, 449455.
  • 11
    Furge, L. L., Stevens-Truss, R., Moore, D. B., and Langeland, J. A. (2009) Vertical and horizontal integration of bioinformatics education: A modular, interdisciplinary approach. Biochem. Mol. Biol. Educ. 37, 2636.
  • 12
    Hack, C. and Kendall, G. (2005) Bioinformatics: Current practice and future challenges for life science education. Biochem. Mol. Biol. Educ. 33, 8285.
  • 13
    Howard, D. R., Miskowski, J. A., Grunwald, S. K., and Abler, M. L. (2007) Assessment of a bioinformatics across life science curricula initiative. Biochem. Mol. Biol. Educ. 35, 1623.
  • 14
    Maloney, M., Parker, J., Leblanc, M., Woodard, C. T., Glackin, M., and Hanrahan, M. (2010) Bioinformatics and the undergraduate curriculum. CBE-Life Sci. Educ. 9, 172174.
  • 15
    Miskowski, J. A., Howard, D. R., Abler, M. L., and Grunwald, S. K. (2007) Design and implementation of an interdepartmental bioinformatics program across life science curricula. Biochem. Mol. Biol. Educ. 35, 915.
  • 16
    Pham, D. Q., Higgs, D. C., Statham, A., and Schleiter, M. K. (2008) Implementation and assessment of a molecular biology and bioinformatics undergraduate degree program. Biochem. Mol. Biol. Educ. 36, 106115.
  • 17
    Tan, T. W., Lim, S. J., Khan, A. M., and Ranganathan, S. (2009) A proposed minimum skill set for university graduates to meet the informatics needs and challenges of the “-omics” era. BMC Genomics 10, S36.
  • 18
    Ditty, J. L., Kvaal, C. A., Goodner, B., Freyermuth, S. K., Bailey, C., Britton, R. A., Gordon, S. G., Heinhorst, S., Reed, K., Xu, Z., Sanders-Lorenz, E. R., Axen, E. Kim, M. Johns, K. Scott, and C. A. Kerfeld, S. (2010) Incorporating genomics and bioinformatics across the life sciences curriculum. PLoS Biol. 8:e1000448.
  • 19
    Fenchel, T. (2002) Microbial behavior in a heterogeneous world. Science 296, 10681071.
  • 20
    Manson, M. D. (1992) Bacterial motility and chemotaxis. Adv. Microb. Physiol. 33, 277346.
  • 21
    Alexandre, G. (2010) Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. Microbiology 156, 22832293.
  • 22
    Armitage, J. P. (1999) Bacterial tactic responses. Adv. Microb. Physiol. 4, 229289.
  • 23
    Bourret, R. B., and Stock, A. M. (2002) Molecular information processing: Lessons from bacterial chemotaxis. J. Biol. Chem. 277, 96259628.
  • 24
    Parales, R. E., Ferrandez, A., and Harwood, C. S. (2004) Chemotaxis in pseudomonads, in Ramos, J.-L., Ed., Pseudomonas. Genomics, Life Style and Molecular Architecture, Vol. 1, Kluwer Academic Publishers, New York, NY, pp. 793815.
  • 25
    Alvarez-Ortega, C., and Harwood, C. S. (2007) Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant. Appl. Environ. Microbiol. 73, 77937795.
  • 26
    Liu, X., Wood, P. L., Parales, J. V., and Parales, R. E. (2009) Chemotaxis to pyrimidines and identification of a cytosine chemoreceptor in Pseudomonas putida. J. Bacteriol. 191, 29092916.
  • 27
    Taguchi, K., Fukutomi, H., Kuroda, A., Kato, J., and Ohtake, H. (1997) Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology 143, 32233229.
  • 28
    Wu, H., Kato, J., Kuroda, A., Ikeda, T., Takiguchi, N., and Ohtake, H. (2000) Identification and characterization of two chemotactic transducers for inorganic phosphate in Pseudomonas aeruginosa. J. Bacteriol. 182, 34003404.
  • 29
    Gordillo, F., Chavez, F. P., and Jerez, C. A. (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol. Ecol. 60, 322328.
  • 30
    Grimm, A. C. and Harwood, C. S. (1997) Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl. Environ. Microbiol. 63, 41114115.
  • 31
    Harwood, C. S., Fosnaugh, K., and Dispensa, M. (1989) Flagellation of Pseudomonas putida and analysis of its motile behavior. J. Bacteriol. 171, 40634066.
  • 32
    Harwood, C. S., Nichols, N. N., Kim, M.-K., Ditty, J. L., and Parales, R. E. (1994) Identification of the pcaRKF gene cluster from Pseudomonas putida: Involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J. Bacteriol. 176, 64796488.
  • 33
    Harwood, C. S., Rivelli, M., and Ornston, L. N. (1984) Aromatic acids are chemoattractants for Pseudomonas putida. J. Bacteriol. 160, 622628.
  • 34
    Parales, R. E., Ditty, J. L., and Harwood, C. S. (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl. Environ. Microbiol. 66, 40984104.
  • 35
    Liu, X. and Parales, R. E. (2009) Bacterial chemotaxis to atrazine and related s-triazines. Appl. Environ. Microbiol. 75, 54815488.
  • 36
    Shitashiro, M., Tanaka, H., Hong, C. S., Kuroda, A., Takiguchi, N., Ohtake, H., and Kato, J. (2005) Identification of chemosensory proteins for trichloroethylene in Pseudomonas aeruginosa. J. Biosci. Bioeng. 99, 396402.
  • 37
    Kim, H.-E., Shitashiro, M., Kuroda, A., Takiguchi, N., and Kato, J. (2007) Ethylene chemotaxis in Psuedomonas aeruginosa and other Pseudomonas species. Microbes Environ. 22, 186189.
  • 38
    Kim, H.-E., Shitashiro, M., Kuroda, A., Takiguchi, N., Ohtake, H., and Kato, J. (2006) Identification and characterization of the chemotactic transducer in Pseudomonas aeruginosa PAO1 for positive chemotaxis to trichloroethylene. J. Bacteriol. 188, 67006702.
  • 39
    Hawkins, A. C. and Harwood, C. S. (2002) Chemotaxis of Ralstonia eutropha JMP134(PJP4) to the herbicide 2,4-dichlorophenoxyacetate. Appl. Environ. Microbiol. 68, 968972.
  • 40
    Sarand, I., Osterberg, S., Holmqvist, S., Holmfeldt, P., Skarfstad, E., Parales, R. E., and Shingler, V. (2008) Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ. Microbiol. 10, 13201334.
  • 41
    Markowitz, V. M., Chen, I. M., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Jacob, B., Huang, J., Williams, P., Huntemann, M., Anderson, I., Mavromatis, K., Ivanova, N. N., and Kyrpides, N. C. (2012) IMG: The integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 40, D115D122.
  • 42
    Gibson, D. T., Koch, J. R., and Kallio, R. E. (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7, 26532662.
  • 43
    Parales, R. E. and Harwood, C. S. (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr. Opin. Microbiol. 5, 266273.
  • 44
    Szurmant, H. and Ordal, G. W. (2004) Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68, 301319.
  • 45
    Parales, R. E., Parales, J. V., Pelletier, D. A., and Ditty, J. L. (2008) Diversity of microbial toluene degradation pathways. Adv. Appl. Microbiol. 64, 173.
  • 46
    Cochrane, G., Karsch-Mizrachi, I., and Nakamura, Y. (2011) The international nucleotide sequence database collaboration. Nucleic Acids Res. 39, D15D18.
  • 47
    Overbeek, R., Bartels, D., Vonstein, V., and Meyer, F. (2007) Annotation of bacterial and archaeal genomes: Improving accuracy and consistency. Chem. Rev. 107, 34313447.
  • 48
    Hill, E., Liuzzi, F., and Giles, J. (2010) Peer-assisted learning from three perspectives: Student, tutor and co-ordinator. Clin. Teach. 7, 244246.
  • 49
    Topping, K. (1988) Peer assessment between students in colleges and universities. Rev. Educ. Res. 68, 249276.
  • 50
    Tatusov, R. L., Galperin, M. Y., Natale, D. A., and Koonin, E. V. (2000) The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 3336.
  • 51
    Liu, X. (2009) Chemotaxis to pyrimidines and s-triazines in Pseudomonas and E. coli, Ph.D. Thesis, Department of Microbiology, University of California, Davis, CA.
  • 52
    Hathaway, R. S., Nagada, B. A., and Gregerman, S. R. (2002) The relationship of undergraduate research participation to graduate and professional education pursuit: An empirical study. J. Coll. Stud. Dev. 43, 614631.
  • 53
    Kremer, J. F. and Bringle, R. G. (1990) The effects of an intensive research experience on the careers of talented undergraduates. J.Res. Dev. Educ. 24, 15.
  • 54
    Mabrouk, P. A. (2009) Survey study investigating the significance of conference participation to undergraduate research students. J. Chem. Educ. 86, 13351340.