SEARCH

SEARCH BY CITATION

References

  • Date, I., N. Takagi, K. Takagi, T. Kago, K. Matsumoto, T. Nakamura, et al. 2004. Hepatocyte growth factor improved learning and memory dysfunction of microsphere-embolized rats. J. Neurosci. Res. 78:442453.
  • Dore-Duffy, P., X. Wang, A. Mehedi, C. W. Kreipke, and J. A. Rafols. 2007. Differential expression of capillary VEGF isoforms following traumatic brain injury. Neurol. Res. 29:395403.
  • Hakamata, Y., K. Tahara, H. Uchida, Y. Sakuma, M. Nakamura, A. Kume, et al. 2001. Green fluorescent protein-transgenic rat: a tool for organ transplantation research. Biochem. Biophys. Res. Commun. 286:779785.
  • Hayashi, T., K. Abe, H. Suzuki, and Y. Itoyama. 1997. Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28:20392044.
  • Hirschi, K. K., S. A. Rohovsky, and P. A. D'Amore. 1997. Cell–cell interactions in vessel assembly: a model for the fundamentals of vascular remodelling. Transpl. Immunol. 5:177178.
  • Hori, S., S. Ohtsuki, K. Hosoya, E. Nakashima, and T. Terasaki. 2004. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J. Neurochem. 89:503513.
  • Jin, K., Y. Zhu, Y. Sun, X. O. Mao, L. Xie, and D. A. Greenberg. 2002. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99:1194611950.
  • Jin, K., X. O. Mao, and D. A. Greenberg. 2006. Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via Rho kinase signaling. J. Neurobiol. 66:236242.
  • Kago, T., N. Takagi, I. Date, Y. Takenaga, K. Takagi, and S. Takeo. 2006. Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries. Biochem. Biophys. Res. Commun. 339:11971203.
  • Kozlowska, H., J. Jablonka, M. Janowski, M. Jurga, M. Kossut, and K. Domanska-Janik. 2007. Transplantation of a novel human cord blood-derived neural-like stem cell line in a rat model of cortical infarct. Stem Cells Dev. 16:481488.
  • Lee, S. W., W. J. Kim, Y. K. Choi, H. S. Song, M. J. Son, I. H. Gelman, et al. 2003. SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nat. Med. 9:900906.
  • Lloyd-Jones, D., R. Adams, M. Carnethon, G. De Simone, T. B. Ferguson, K. Flegal, et al. 2009. Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119:480486.
  • Lyden, P. D., J. A. Zivin, D. R. Chabolla, M. A. Jacobs, and F. H. Gage. 1992. Quantitative effects of cerebral infarction on spatial learning in rats. Exp. Neurol. 116:122132.
  • Marti, H. J., M. Bernaudin, A. Bellail, H. Schoch, M. Euler, E. Petit, et al. 2000. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am. J. Pathol. 156:965976.
  • Miyake, K., S. Takeo, and H. Kaijihara. 1993. Sustained decrease in brain regional blood flow after microsphere embolism in rats. Stroke 24:415420.
  • Mochizuki, N., N. Takagi, K. Kurokawa, C. Onozato, Y. Moriyama, K. Tanonaka, et al. 2008. Injection of neural progenitor cells improved learning and memory dysfunction after cerebral ischemia. Exp. Neurol. 211:194202.
  • Mochizuki, N., Y. Moriyama, N. Takagi, S. Takeo, and K. Tanonaka. 2011. Intravenous injection of neural progenitor cells improves cerebral ischemia-induced learning dysfunction. Biol. Pharm. Bull. 34:260265.
  • Moriyama, Y., N. Takagi, and K. Tanonaka. 2011. Intravenous injection of neural progenitor cells improved depression-like behavior after cerebral ischemia. Transl. Psychiatry 1:e29.
  • Nag, S., J. L. Takahashi, and D. W. Kilty. 1997. Role of vascular endothelial growth factor in blood–brain barrier breakdown and angiogenesis in brain trauma. J. Neuropathol. Exp. Neurol. 56:912921.
  • Nagakura, A., K. Miyake-Takagi, N. Takagi, M. Fukui, and S. Takeo. 2002. Impairment of adenylyl cyclase and of spatial memory function after microsphere embolism in rats. J. Neurosci. Res. 68:363372.
  • Naritomi, H. 1991. Experimental basis of multi-infarct dementia: memory impairments in rodent models of ischemia. Alzheimer Dis. Assoc. Disord. 5:103111.
  • Nieto, M., C. Schuurmans, O. Britz, and F. Guillemot. 2001. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29:401413.
  • Patan, S. 2004. Vasculogenesis and angiogenesis. Cancer Treat. Res. 117:332.
  • Pfaff, D., U. Fiedler, and H. G. Augustin. 2006. Emerging roles of the Angiopoietin-Tie and the ephrin-Eph systems as regulators of cell trafficking. J. Leukoc. Biol. 80:719726.
  • Richardson, T. P., M. C. Peters, A. B. Ennett, and D. J. Mooney. 2001. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:10291034.
  • Skold, M. K., C. von Gertten, A. C. Sandberg-Nordqvist, T. Mathiesen, and S. Holmin. 2005. VEGF and VEGF receptor expression after experimental brain contusion in rat. J. Neurotrauma 22:353367.
  • Sun, Y., K. Jin, L. Xie, J. Childs, X. O. Mao, A. Logvinova, et al. 2003. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111:18431851.
  • Suri, C., J. McClain, G. Thurston, D. M. McDonald, H. Zhou, E. H. Oldmixon, et al. 1998. Increased vascularization in mice overexpressing angiopoietin-1. Science 282:468471.
  • Taguchi, A., T. Soma, H. Tanaka, T. Kanda, H. Nishimura, H. Yoshikawa, et al. 2004. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J. Clin. Invest. 114:330338.
  • Takahashi, K., T. Yasuhara, T. Shingo, K. Muraoka, M. Kameda, A. Takeuchi, et al. 2008. Embryonic neural stem cells transplanted in middle cerebral artery occlusion model of rats demonstrated potent therapeutic effects, compared to adult neural stem cells. Brain Res. 1234:172182.
  • Takenaga, Y., N. Takagi, K. Murotomi, K. Tanonaka, and S. Takeo. 2009. Inhibition of Src activity decreases tyrosine phosphorylation of occludin in brain capillaries and attenuates increase in permeability of the blood-brain barrier after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab. 29:10991108.
  • Wang, W. Y., J. H. Dong, X. Liu, Y. Wang, G. X. Ying, Z. M. Ni, et al. 2005. Vascular endothelial growth factor and its receptor Flk-1 are expressed in the hippocampus following entorhinal deafferentation. Neuroscience 134:11671178.
  • Wang, Y., K. Jin, X. O. Mao, L. Xie, S. Banwait, H. H. Marti, et al. 2007. VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J. Neurosci. Res. 85:740747.
  • Widenfalk, J., A. Lipson, M. Jubran, C. Hofstetter, T. Ebendal, Y. Cao, et al. 2003. Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience 120:951960.
  • Yu, H., P. Wang, P. An, and X. Yixue. 2012. Recombinant human angiopoietin-1 ameliorates the expressions of ZO-1, occludin, VE-cadherin, and PKCalpha signaling after focal cerebral ischemia/reperfusion in rats. J. Mol. Neurosci. 46:236247.
  • Zacharek, A., J. Chen, X. Cui, A. Li, Y. Li, C. Roberts, et al. 2007. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J. Cereb. Blood Flow Metab. 27:16841691.
  • Zhao, L. R., W. M. Duan, M. Reyes, C. D. Keene, C. M. Verfaillie, and W. C. Low. 2002. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp. Neurol. 174:1120.