SEARCH

SEARCH BY CITATION

References

  • Chang, Y. W., L. A. Goff, H. Li, N. Kane-Goldsmith, E. Tzatzalos, R. P. Hart, et al. 2009. Rapid induction of genes associated with tissue protection and neural development in contused adult spinal cord after radial glial cell transplantation. J. Neurotrauma 26:979993.
  • Dietrich, W. D., O. Alonso, R. Busto, and S. P. Finklestein. 1996. Posttreatment with intravenous basic fibroblast growth factor reduces histopathological damage following fluid-percussion brain injury in rats. J. Neurotrauma 13:309316.
  • Dyson, S. E., A. R. Harvey, B. D. Trapp, and J. W. Heath. 1988. Ultrastructural and immunohistochemical analysis of axonal regrowth and myelination in membranes which form over lesion sites in the rat visual system. J. Neurocytol. 17:797808.
  • Ellis, P., B. M. Fagan, S. T. Magness, S. Hutton, O. Taranova, S. Hayashi, et al. 2004. SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev. Neurosci. 26:148165.
  • Fong, H., K. A. Hohenstein, and P. J. Donovan. 2008. Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 26:19311938.
  • Garcia, A. D., N. B. Doan, T. Imura, T. G. Bush, and M. V. Sofroniew. 2004. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7:12331241.
  • Goldshmit, Y., M. P. Galea, G. Wise, P. F. Bartlett, and A. M. Turnley. 2004. Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J. Neurosci. 24:1006410073.
  • Goldshmit, Y., M. D. Spanevello, S. Tajouri, L. Li, F. Rogers, M. Pearse, et al. 2011. EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS One 6:e24636.
  • Goldshmit, Y., T. E. Sztal, P. R. Jusuf, T. E. Hall, M. Nguyen-Chi, and P. D. Currie. 2012. Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J. Neurosci. 32:74777492.
  • Guzen, F. P., J. G. Soares, L. M. de Freitas, J. R. Cavalcanti, F. G. Oliveira, J. F. Araujo, et al. 2012. Sciatic nerve grafting and inoculation of FGF-2 promotes improvement of motor behavior and fiber regrowth in rats with spinal cord transection. Restor. Neurol. Neurosci. 30:265275.
  • Harvey, A. R., and M. M. Tan. 1992. Spontaneous regeneration of adult rat retinal ganglion cell axons in vivo. Neuroreport 3:239242.
  • Hasegawa, K., Y. W. Chang, H. Li, Y. Berlin, O. Ikeda, N. Kane-Goldsmith, et al. 2005. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Exp. Neurol. 193:394410.
  • Heins, N., P. Malatesta, F. Cecconi, M. Nakafuku, K. L. Tucker, M. A. Hack, et al. 2002. Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5:308315.
  • Hui, S. P., A. Dutta, and S. Ghosh. 2010. Cellular response after crush injury in adult zebrafish spinal cord. Dev. Dyn. 239:29622979.
  • Imura, T., I. Nakano, H. I. Kornblum, and M. V. Sofroniew. 2006. Phenotypic and functional heterogeneity of GFAP-expressing cells in vitro: differential expression of LeX/CD15 by GFAP-expressing multipotent neural stem cells and non-neurogenic astrocytes. Glia 53:277293.
  • Jones, L. L., R. U. Margolis, and M. H. Tuszynski. 2003. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp. Neurol. 182:399411.
  • Kang, C. E., M. D. Baumann, C. H. Tator, and M. S. Shoichet. 2013. Localized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury. Cells Tissues Organs 197:55-63.
  • Kawamata, T., N. E. Alexis, W. D. Dietrich, and S. P. Finklestein. 1996. Intracisternal basic fibroblast growth factor (bFGF) enhances behavioral recovery following focal cerebral infarction in the rat. J. Cereb. Blood Flow Metab. 16:542547.
  • Kawamata, T., W. D. Dietrich, T. Schallert, J. E. Gotts, R. R. Cocke, L. I. Benowitz, et al. 1997. Intracisternal basic fibroblast growth factor enhances functional recovery and up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc. Natl. Acad. Sci. USA 94:81798184.
  • Kojima, A., and C. H. Tator. 2002. Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats. J. Neurotrauma 19:223238.
  • Kroehne, V., D. Freudenreich, S. Hans, J. Kaslin, and M. Brand. 2011. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138:48314841.
  • Kuo, H. S., M. J. Tsai, M. C. Huang, C. W. Chiu, C. Y. Tsai, M. J. Lee, et al. 2011. Acid fibroblast growth factor and peripheral nerve grafts regulate Th2 cytokine expression, macrophage activation, polyamine synthesis, and neurotrophin expression in transected rat spinal cords. J. Neurosci. 31:41374147.
  • Lee, T. T., B. A. Green, W. D. Dietrich, and R. P. Yezierski. 1999. Neuroprotective effects of basic fibroblast growth factor following spinal cord contusion injury in the rat. J. Neurotrauma 16:347356.
  • Lee, H. J., J. Wu, J. Chung, and J. R. Wrathall. 2012. SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells. J. Neurosci. Res. 91:196210.
  • Li, Y., R. J. Oskouian, Y. J. Day, J. A. Kern, and J. Linden. 2006. Optimization of a mouse locomotor rating system to evaluate compression-induced spinal cord injury: correlation of locomotor and morphological injury indices. J. Neurosurg. Spine 4:165173.
  • Lichtenstein, M. P., J. L. Madrigal, A. Pujol, and E. Galea. 2012. JNK/ERK/FAK mediate promigratory actions of basic fibroblast growth factor in astrocytes via CCL2 and COX2. Neurosignals 20:86102.
  • Lu, P., Y. Wang, L. Graham, K. McHale, M. Gao, D. Wu, et al. 2012. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150:12641273.
  • McDermott, K. L., R. Raghupathi, S. C. Fernandez, K. E. Saatman, A. A. Protter, S. P. Finklestein, et al. 1997. Delayed administration of basic fibroblast growth factor (bFGF) attenuates cognitive dysfunction following parasagittal fluid percussion brain injury in the rat. J. Neurotrauma 14:191200.
  • Meijs, M. F., L. Timmers, D. D. Pearse, P. A. Tresco, M. L. Bates, E. A. Joosten, et al. 2004. Basic fibroblast growth factor promotes neuronal survival but not behavioral recovery in the transected and Schwann cell implanted rat thoracic spinal cord. J. Neurotrauma 21:14151430.
  • Meletis, K., F. Barnabe-Heider, M. Carlen, E. Evergren, N. Tomilin, O. Shupliakov, et al. 2008. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 6:e182.
  • Mignone, J. L., V. Kukekov, A. S. Chiang, D. Steindler, and G. Enikolopov. 2004. Neural stem and progenitor cells in nestin-GFP transgenic mice. J. Comp. Neurol. 469:311324.
  • Petit, A., A. D. Sanders, T. E. Kennedy, W. Tetzlaff, K. J. Glattfelder, R. A. Dalley, et al. 2011. Adult spinal cord radial glia display a unique progenitor phenotype. PLoS One 6:e24538.
  • Pinto, A. R., A. Chandran, N. A. Rosenthal, and J. W. Godwin. 2013. Isolation and analysis of single cells from the mouse heart. J. Immunol. Methods 393:7480.
  • Rabchevsky, A. G., I. Fugaccia, A. Fletcher-Turner, D. A. Blades, M. P. Mattson, and S. W. Scheff. 1999. Basic fibroblast growth factor (bFGF) enhances tissue sparing and functional recovery following moderate spinal cord injury. J. Neurotrauma 16:817830.
  • Reimer, M. M., I. Sorensen, V. Kuscha, R. E. Frank, C. Liu, C. G. Becker, et al. 2008. Motor neuron regeneration in adult zebrafish. J. Neurosci. 28:85108516.
  • Rodriguez-Jimnez, F. J., A. Alastrue-Agudo, S. Erceg, M. Stojkovic, and V. Moreno-Manzano. 2012. FM19G11 favors spinal cord injury regeneration and stem cell self-renewal by mitochondrial uncoupling and glucose metabolism induction. Stem Cells 30:22212233.
  • Silver, J., and J. H. Miller. 2004. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5:146156.
  • Teng, Y. D., I. Mocchetti, and J. R. Wrathall. 1998. Basic and acidic fibroblast growth factors protect spinal motor neurones in vivo after experimental spinal cord injury. Eur. J. Neurosci. 10:798802.
  • Teng, Y. D., I. Mocchetti, A. M. Taveira-DaSilva, R. A. Gillis, and J. R. Wrathall. 1999. Basic fibroblast growth factor increases long-term survival of spinal motor neurons and improves respiratory function after experimental spinal cord injury. J. Neurosci. 19:70377047.
  • Toyooka, T., H. Nawashiro, N. Shinomiya, and K. Shima. 2011. Down-regulation of glial fibrillary acidic protein and vimentin by RNA interference improves acute urinary dysfunction associated with spinal cord injury in rats. J. Neurotrauma 28:607618.
  • Tzeng, S. F., M. Kahn, S. Liva, and J. De Vellis. 1999. Tumor necrosis factor-alpha regulation of the Id gene family in astrocytes and microglia during CNS inflammatory injury. Glia 26:139152.
  • Wu, J. C., W. C. Huang, Y. A. Tsai, Y. C. Chen, and H. Cheng. 2008. Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: a preliminary Phase I clinical study. J. Neurosurg. Spine 8:208214.
  • Yan, H. Q., J. Yu, A. E. Kline, P. Letart, L. W. Jenkins, D. W. Marion, et al. 2000. Evaluation of combined fibroblast growth factor-2 and moderate hypothermia therapy in traumatically brain injured rats. Brain Res. 887:134143.
  • Yang, H., W. Ling, A. Vitale, C. Olivera, Y. Min, and S. You. 2011. ErbB2 activation contributes to de-differentiation of astrocytes into radial glial cells following induction of scratch-insulted astrocyte conditioned medium. Neurochem. Int. 59:10101018.