SEARCH

SEARCH BY CITATION

References

  • Bao, X., C. Lu, and J. A. Frangos. 1999. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1. Arterioscler. Thromb. Vasc. Biol. 19:9961003.
  • Berger, S. A. and L. D. Jou. 2000. Flows in stenotic vessels. Annu. Rev. Fluid Mech. 32:347382.
  • Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. 1971. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. B. Biol. Sci. 177:109159.
  • Cassanova, R. A. and D. P. Giddens. 1978. Disorder distal to modeled stenoses in steady and pulsatile flow. J. Biomech. 11:441453.
  • Choudhary, S., C. L. Higgins, I. Y. Chen, M. Reardon, G. Lawrie, G. W. Vick, 3rd, C. Karmonik, D. P. Via, and J. D. Morrisett. 2006. Quantitation and localization of matrix metalloproteinases and their inhibitors in human carotid endarterectomy tissues. Arterioscler. Thromb. Vasc. Biol. 26:23512358.
  • Dai, G., S. Vaughn, Y. Zhang, E. T. Wang, G. Garcia-Cardena, and M. A. Gimbrone, Jr. 2007. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ. Res. 101:723733.
  • DePaola, N., M. A. Gimbrone, Jr., P. F. Davies, and C. F. Dewey, Jr. 1992. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:12541257.
  • DePaola, N., P. F. Davies, W. F. Pritchard, Jr., L. Florez, N. Harbeck, and D. C. Polacek. 1999. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl. Acad. Sci. U. S. A. 96:31543159.
  • Ford, M.D., Alperin, N., Lee, S.H., et al. 2005. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol Meas 26:477488.
  • Fry, D. L. 1968. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ. Res. 22:165197.
  • Fry, D. L. 1969. Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog. Circ. Res. 24:93108.
  • Garcia-Cardena, G., J. Comander, K. R. Anderson, B. R. Blackman, and M. A. Gimbrone, Jr. 2001. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl. Acad. Sci. U. S. A. 98:44784485.
  • Gertz, S. D. and W. C. Roberts. 1990. Hemodynamic shear force in rupture of coronary arterial atherosclerotic plaques. Am. J. Cardiol. 66:13681372.
  • Gimbrone, M. A., Jr., N. Resnick, T. Nagel, L. M. Khachigian, T. Collins, and J. N. Topper. 1997. Hemodynamics, endothelial gene expression, and atherogenesis. Ann. N. Y. Acad. Sci. 811:110; discussion 1.
  • Holdsworth, D. W., C. J. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt. 1999. Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol. Meas. 20:219240.
  • Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. 1985. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293302.
  • Malek, A. M., S. Izumo, and S. L. Alper. 1999a. Modulation by pathophysiological stimuli of the shear stress-induced up-regulation of endothelial nitric oxide synthase expression in endothelial cells. Neurosurgery 45:334344; discussion 44–45.
  • Malek, A. M., S. L. Alper, and S. Izumo. 1999b. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:20352042.
  • Nagel, T., N. Resnick, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. 1999. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19:18251834.
  • North American Symptomatic Carotid Endarterectomy Trial. 1991. Methods, patient characteristics, and progress. Stroke; 22:711720.
  • Papathanasopoulou, P., S. Zhao, U. Kohler, M. B. Robertson, Q. Long, P. Hoskins, X. Y. Xu, and I. Marshall. 2003. MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J. Magn. Reson. Imaging 17:153162.
  • Phelps, J. E. and N. DePaola. 2000. Spatial variations in endothelial barrier function in disturbed flows in vitro. Am. J. Physiol. Heart Circ. Physiol. 278:H469H476.
  • Schirmer, C. M. and A. M. Malek. 2007a. Prediction of complex flow patterns in intracranial atherosclerotic disease using computational fluid dynamics. Neurosurgery 61:842852.
  • Schirmer, C. M. and A. M. Malek. 2007b. Wall shear stress gradient analysis within an idealized stenosis using non-newtonian flow. Neurosurgery 61:853864.
  • Schirmer, C. M. and A. M. Malek. 2008. Estimation of wall shear stress dynamic fluctuations in intracranial atherosclerotic lesions using computational fluid dynamics. Neurosurgery 63:326334; discussion 34–35.
  • Steinman, D. A., T. L. Poepping, M. Tambasco, R. N. Rankin, and D. W. Holdsworth. 2000. Flow patterns at the stenosed carotid bifurcation: effect of concentric versus eccentric stenosis. Ann. Biomed. Eng. 28:415423.
  • Stroud, J. S., S. A. Berger, and D. Saloner. 2002. Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J. Biomech. Eng. 124:920.
  • Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone, Jr., and C. F. Dewey, Jr. 1997. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:31023106.
  • Thomas, J. B., J. S. Milner, B. K. Rutt, and D. A. Steinman. 2003. Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann. Biomed. Eng. 31:132141.
  • White, C. R., M. Haidekker, X. Bao, and J. A. Frangos. 2001. Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation. Circulation 103:25082513.
  • White, C. R., H. Y. Stevens, M. Haidekker, and J. A. Frangos. 2005. Temporal gradients in shear, but not spatial gradients, stimulate ERK1/2 activation in human endothelial cells. Am. J. Physiol. Heart. Circ. Physiol. 289:H2350H2355.