SEARCH

SEARCH BY CITATION

References

  • Alexander, R. D. 1962. Evolutionary change in cricket acoustical communication. Evolution 16:443467.
  • Anava, S., D. Rand, Y. Zilberstein, and A. Ayali. 2009. Innexin genes and gap junction proteins in the locust frontal ganglion. Insect Biochem. Mol. Biol. 39:224233.
  • Antonsen, B. L., and D. H. Edwards. 2003. Differential dye-coupling reveals lateral giant escape circuit in crayfish. J. Comp. Neurol. 466:113.
  • Ausborn, J., W. Stein, and H. Wolf. 2007. Frequency control of motor patterning by negative sensory feedback. J. Neurosci. 27:93199328.
  • Beenhakker, M. P., N. D. DeLong, S. R. Saideman, F. Nadim, and M. P. Nusbaum. 2005. Proprioceptor regulation of motor circuit activity by presynaptic inhibition of a modulatory projection neuron. J. Neurosci. 25:87948806.
  • Bentley, D. R. 1969. Intracellular activity in cricket neurons during generation of song patterns. J. Comp. Physiol. A. 62:267283.
  • Bentley, D. R., and R. R. Hoy. 1972. Genetic control of the neuronal network generating cricket (Teleogryllus, Gryllus) song patterns. Anim. Behav. 20:478492.
  • Büschges, A., and M. Gruhn. 2008. Mechanosensory feedback in walking: from joint control to locomotor patterns. Adv. Insect Physiol. 34:194234.
  • Clarac, F., and E. Pearlstein. 2007. Invertebrate preparations and their contribution to neurobiology in the second half of the 20th century. Brain Res. Rev. 54:113161.
  • Clyne, J. D., and G. Miesenböck. 2008. Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133:354363.
  • Cymbalyuk, G. S., Q. Gaudry, M. A. Masino, and R. L. Calabrese. 2002. Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. J. Neurosci. 22:1058010592.
  • Dawson, J. W., and J. H. Fullard. 1995. The neuroethology of sound production in tiger moths (Lepidoptera, Arctiidae). II. Location of the tymbal central pattern generator in Cycnia tenera Hubner. J. Comp. Physiol. A. 176:541549.
  • Delcomyn, F. 1980. Neural basis of rhythmic behavior in animals. Science 210:492498.
  • Dickinson, P. S. 2006. Neuromodulation of central pattern generators in invertebrates and vertebrates. Curr. Opin. Neurobiol. 16:604614.
  • Doherty, J. A. 1985. Temperature coupling and “trade-off” phenomena in the acoustic comunication system of the cricket, Gryllus bimaculatus De Geer (Gryllidae). J. Exp. Biol. 114:1736.
  • Dumont, J. P. C., and R. M. Robertson. 1986. Neuronal circuits: an evolutionary perspective. Science 233:849853.
  • Elliott, C. J. H. 1983. Wing hair plates in crickets: physiological characteristics and connections with stridulatory motor neurones. J. Exp. Biol. 107:2147.
  • Elliott, C. J. H., and U. T. Koch. 1983. Sensory feedback stabilizing reliable stridulation in the field cricket Gryllus campestris L. Anim. Behav. 31:887901.
  • Ellison, C. K., C. Wiley, and K. L. Shaw. 2011. The genetics of speciation: genes of small effect underlie sexual isolation in the Hawaiian cricket Laupala. J. Evol. Biol. 24:11101119.
  • Elsner, N. 1994. The search for the neural centers of cricket and grasshopper song. Pp. 167193 in K. Schildberger and N. Elsner, eds. Neural basis of behavioural adaptations. Gustav Fischer Verlag, Stuttgart, NY.
  • Ewadinger, N. M., N. I. Syed, K. Lukowiak, and A. G. M. Bulloch. 1994. Differential tracer coupling between pairs of identified neurones of the mollusc Lymnea stagnalis. J. Exp. Biol. 192:291297.
  • Fan, R. J., A. Marin-Burgin, K. A. French, and W. O. Friesen. 2005. A dye mixture (Neurobiotin and Alexa 488) reveals extensive dye-coupling among neurons in leeches; physiology confirms the connections. J. Comp. Physiol. A 191:11571171.
  • Gerhardt, H. C., and F. Huber. 2002. Neural control of sound production. Pp. 4882 in H. C. Gerhardt and F. Huber, eds. Acoustic communication in insects and anurans. The University of Chicago Press, Chicago, IL.
  • Grace, J. L., and K. L. Shaw. 2011. Coevolution of male mating signal and female preference during early lineage divergence of the Hawaiian cricket, Laupala cerasina. Evolution 65:21842196.
  • Gramoll, S., and N. Elsner. 1987. Morphology of local “stridulation” interneurons in the metathoracic ganglion of the acridid grasshopper Omocestus viridulus L. J. Comp. Neurol. 263:593606.
  • Harris-Warrick, R. M. 2010. General principles of rhythmogenesis in central pattern generator networks. Prog. Brain Res. 187:213222.
  • Harris-Warrick, R. M. 2011. Neuromodulation and flexibility in central pattern generator networks. Curr. Opin. Neurobiol. 21:685692.
  • Hedwig, B. 1986. On the role in stridulation of plurisegmental interneurons of the acridid grasshopper Omocestus viridulus L. I. Anatomy and physiology of descending cephalothoracic interneurons. J. Comp. Physiol. A 158:413427.
  • Hedwig, B. 1992. On the control of stridulation in the acridid grasshopper Omocestus viridulus L. I. Interneurons involved in rhythm generation and bilateral coordination. J. Comp. Physiol. A 171:117128.
  • Hedwig, B. 2000. Control of cricket stridulation by a command neuron: efficacy depends on behavioural state. J. Neurophysiol. 83:712722.
  • Hennig, R. M. 1989. Neuromuscular activity during stridulation in the cricket Teleogryllus commodus. J. Comp. Physiol. A 165:837846.
  • Hennig, R. M. 1990. Neuronal control of the forewings in two different behaviours: stridulation and flight in the cricket, Teleogryllus commodus. J. Comp. Physiol. A 167:617627.
  • Hennig, R. M., and D. Otto. 1995. Distributed control of song pattern generation in crickets revealed by lesions to the thoracic ganglia. Zoology 99:268276.
  • Hoy, R. R., and R. C. Paul. 1973. Genetic control of song specificity in crickets. Science 180:8283.
  • Hoy, R. R. 1978. Acoustic communication in cricket: a model system for the study of feature detection. Fed. Proc. 37:23162323.
  • Huber, F. 1955. Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen von Gryllus campestris L. Z. Tierpsychol. 12:1248.
  • Huber, F. 1960. Untersuchungen über die Funktion des ZNS und insbesondere des Gehirnes bei der Fortbewegung und der Lauterzeugung der Grillen. Z. vergl Physiol. 44:60132.
  • Huber, F. 1962. Central nervous control of sound production in crickets and some speculations on its evolution. Evolution 16:429442.
  • Jürgens, U., and S. R. Hage. 2007. On the role of the reticular formation in vocal pattern generation. Behav. Brain Res. 182:308314.
  • Kammer, A. E. 1976. Respiration and the generation of rhythmic outputs in insects. Fed. Proc. 35:19921999.
  • Kiehn, O., and M. C. Tresch. 2002. Gap junctions and motor behavior. Trends Neurosci. 25:108115.
  • Knepper, M., and B. Hedwig. 1997. NEUROLAB, a PC-program for the processing of neurobiological data. Comput. Methods Programs Biomed. 52:7577.
  • Kutsch, W. 1969. Neuromuscular activity in three cricket species during various behavioural patterns. J. Comp. Physiol. A 63:335378.
  • Kutsch, W., and F. Huber. 1989. Neural basis of song production. Pp. 262309 in F. Huber, T. E. Moore, and W. Loher, eds. Cricket behavior and neurobiology. Cornell University Press, Ithaca, NY.
  • Kutsch, W., and D. Otto. 1972. Evidence for spontaneous song production independent of head ganglia in Gryllus campestris L. J. Comp. Physiol. A 81:115119.
  • Mamiya, A., Y. Manor, and F. Nadim. 2003. Short-term dynamics of a mixed chemical and electrical synapse in a rhythmic network. J. Neurosci. 23:95579564.
  • El Manira, A., J. Tegner, and S. Grillner. 1994. Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey. J. Neurophysiol. 72:18521861.
  • Manor, Y., and F. Nadim. 2001. Synaptic depression mediates bistability in neuronal networks with recurrent inhibitory connectivity. J. Neurosci. 21:94609470.
  • Manor, Y., F. Nadim, L. F. Abbott, and E. Marder. 1997. Temporal dynamics of graded synaptic transmission in the lobster stomatogastric ganglion. J. Neurosci. 17:56105621.
  • Marder, E., and R. L. Calabrese. 1996. Principles of rhythmic motor pattern generation. Physiol. Rev. 76:687717.
  • Marder, E., D. Bucher, D. J. Schulz, and A. L. Taylor. 2005. Invertebrate central pattern generation moves along. Curr. Biol. 15:685699.
  • Möss, D. 1971. Sense organs in the wing region of the field cricket (Gryllus campestris L.) and their role in the control of stridulation and wing position. J. Comp. Physiol. A 73:5383.
  • Mulloney, B., D. H. Perkel, and R. W. Budelli. 1981. Motor-pattern production: interaction of chemical and electrical synapses. Brain Res. 229:2533.
  • Otto, D. 1971. Central nervous control of sound production in crickets. J. Comp. Physiol. A 74:227271.
  • Otto, D., and R. M. Hennig. 1993. Interneurons descending from the cricket subesophageal ganglion control stridulation and ventilation. Naturwissenschaften 80:3638.
  • Paripovic, I., R. M. Hennig, and D. Otto. 1996. Abdominal ventilatory pattern in crickets depends on the stridulatory motor pattern. Physiol. Entomol. 21:223230.
  • Paton, J. F. R., A. P. L. Abdala, H. Koizumi, J. C. Smith, and W. M. St-John. 2006. Respiratory rhythm generation during gasping depends on persistent sodium current. Nat. Neurosci. 9:311313.
  • Pearson, K. G. 1980. Burst generation in coordinating interneurons of the ventilatory system of the locust. J. Comp. Physiol. A 137:305313.
  • Pearson, K. G. 1993. Common principles of motor control in vertebrates and invertebrates. Annu. Rev. Neurosci. 16:265297.
  • Pearson, K. G. 1995. Proprioceptive regulation of locomotion. Curr. Opin. Neurobiol. 5:786791.
  • Pearson, K. G. 2000. Neural adaptation in the generation of rhythmic behavior. Annu. Rev. Physiol. 62:723753.
  • Perkel, D. H., and B. Mulloney. 1974. Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science 185:181183.
  • Pfau, H. K., and U. T. Koch. 1994. The functional morphology of singing in the cricket. J. Exp. Biol. 195:147167.
  • von Philipsborn, A. C., T. Liu, J. Y. Yu, C. Masser, S. S. Bidaye, and B. J. Dickson. 2011. Neuronal control of Drosophila courtship song. Neuron 69:509522.
  • Pinsker, H. M. 1977. Aplysia bursting neurones as endogenous oscillators. I. Phase-response curves for pulsed inhibitory synaptic input. J. Neurophysiol. 40:527543.
  • Pollack, G. S., and R. R. Hoy. 1979. Temporal pattern as a cue for species-specific calling song recognition in crickets. Science 204:429432.
  • Poulet, J. F. A., and B. Hedwig. 2002. A corollary discharge maintains auditory sensitivity during sound production. Nature 418:872876.
  • Poulet, J. F. A., and B. Hedwig. 2006. The cellular basis of a corollary discharge. Science 311:518522.
  • Ramirez, J. M., and K. G. Pearson. 1989. Distribution of intersegmental interneurons that can reset the respiratory rhythm of the locust. J. Exp. Biol. 141:151176.
  • Rideout, E. J., J. C. Billeter, and S. F. Goodwin. 2007. The sex-determination genes fruitless and doublesex specify a neural substrate required for courtship song. Curr. Biol. 17:14731478.
  • Robertson, R. M., and K. G. Pearson. 1983. Interneurons in the flight system of the locust: distribution, connections, and resetting properties. J. Comp. Neurol. 215:3350.
  • Robertson, R. M., and K. G. Pearson. 1985. Neural circuits in the flight system of the locust. J. Neurophysiol. 53:110128.
  • Robertson, R. M., and D. N. Reye. 1988. A local circuit interaction in the flight system of the locust. J. Neurosci. 8:39293936.
  • Robertson, R. M., K. G. Pearson, and H. Reichert. 1982. Flight interneurons in the locust and the origin of insect wings. Science 217:177179.
  • Ronacher, B. 1989. Stridulation of acridid grasshoppers after hemisection of thoracic ganglia: evidence for hemiganglionic oscillators. J. Comp. Physiol. A 164:723736.
  • Satterlie, R. A. 1985. Reciprocal inhibition and post-inhibitory rebound produce reverberation in a locomotor pattern generator. Science 229:402404.
  • Schäffner, K. H., and U. T. Koch. 1987. Effects of wing campaniform sensilla lesions on stridulation in crickets. J. Exp. Biol. 129:2540.
  • Schildberger, K. 1994. The auditory pathway of crickets: adaptations for intraspecific acoustic communication. Pp. 209225 in K. Schildberger and N. Elsner, eds. Neural basis of behavioural adaptations. Gustav Fischer Verlag, Stuttgart, NY.
  • Schöneich, S., and B. Hedwig. 2010. Hyperacute directional hearing and phonotactic steering in the cricket (Gryllus bimaculatus deGeer). PLoS ONE 5:e15141.
  • Schöneich, S., and B. Hedwig. 2011. Neural basis of singing in crickets: central pattern generation in abdominal ganglia. Naturwissenschaften 98:10691073.
  • Schöneich, S., K. Schildberger, and P. A. Stevenson. 2011. Neuronal organization of a fast-mediating cephalothoracic pathway for antennal-tactile information in the cricket (Gryllus bimaculatus DeGeer). J. Comp. Neurol. 519:16771690.
  • Schütze, H., and N. Elsner. 2001. Stridulatory pattern generation in acridid grasshoppers: metathoracic interneurons in Stenobothrus rubicundus (Germar 1817). J. Comp. Physiol. A 187:529540.
  • Selverston, A. I. 2010. Invertebrate central pattern generator circuits. Philos. Trans. R. Soc. B 365:23292345.
  • Shaw, K. L., and P. D. Danley. 2003. Behavioral genomics and the study of speciation at a porous species boundary. Zoology 106:261273.
  • Simmons, P. J. 1982. Transmission mediated with and without spikes at connexions between large second-order neurones of locust ocelli. J. Comp. Physiol. A 147:401414.
  • Verburgt, L., M. Ferreira, and J. W. H. Ferguson. 2011. Male field cricket song reflects age, allowing females to prefer young males. Anim. Behav. 81:1929.
  • Weber, T., and J. Thorson. 1989. Phonotactic behaviour of walking crickets. Pp. 310339 in F. Huber, T. E. Moore and W. Loher, eds. Cricket behavior and neurobiology. Cornell University Press, Ithaca, NY.
  • Wenzel, B., and B. Hedwig. 1999. Neurochemical control of cricket stridulation revealed by pharmacological microinjections into the brain. J. Exp. Biol. 202:22032216.
  • Yuste, R., J. N. MacLean, J. Smith, and A. Lansner. 2005. The cortex as a central pattern generator. Nat. Rev. Neurosci. 6:477483.