SEARCH

SEARCH BY CITATION

References

  • Aftanas, L., and S. Golocheikine. 2001. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci. Lett. 310:5760.
  • Babiloni, C., G. Frisoni, M. Steriade, L. Bresciani, G. Binetti, C. Del Percio, et al. 2006. Frontal white matter volume and delta EEG sources negatively correlate in awake subjects with mild cognitive impairment and Alzheimer's disease. Clin. Neurophysiol. 117:11131129.
  • Babiloni, C., P. J. Visser, G. Frisoni, P. P. De Deyn, L. Bresciani, V. Jelic, et al. 2010. Cortical sources of resting EEG rhythms in mild cognitive impairment and subjective memory complaint. Neurobiol. Aging 31:17871798.
  • Basar, E., and B. Guntekin. 2008. A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res. 1235:172193.
  • Bassett, D. S., and E. T. Bullmore. 2009. Human brain networks in health and disease. Curr. Opin. Neurol. 22:340347.
  • Besthorn, C., H. Forstl, C. Geiger-Kabisch, H. Sattel, T. Gasser, and U. Schreiter-Gasser. 1994. EEG coherence in Alzheimer disease. Electroencephalogr. Clin. Neurophysiol. 90:242245.
  • Chapman, R. M., J. W. McCrary, M. N. Gardner, T. C. Sandoval, M. D. Guillily, L. A. Reilly, et al. 2009. Brain ERP components predict which individuals progress to Alzheimer's disease and which do not. Neurobiol. Aging 32:17421755.
  • Coben, L. A., D. Chi, A. Z. Snyder, and M. Storandt. 1990. Replication of a study of frequency analysis of the resting awake EEG in mild probable Alzheimer's disease. Electroencephalogr. Clin. Neurophysiol. 75:148154.
  • Delorme, A., and S. Makeig. 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134:921.
  • Folstein, M. F., S. E. Folstein, and P. R. McHugh. 1975. Mini-Mental State: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12:189198.
  • Frodl, T., H. Hampel, G. Juckel, K. Burger, F. Padberg, R. Engel, et al. 2002. Value of event-related P300 subcomponents in the clinical diagnosis of mild cognitive impairment and Alzheimer's disease. Psychophysiology 39:175181.
    Direct Link:
  • Goodin, D. 2005. Event-related potentials. Elsevier Churchill Livingstone, Philadelphia.
  • Grady, C. L. 1998. Brain imaging and age-related changes in cognition. Exp. Gerontol. 33:661673.
  • Ho, M. C., C. Y. Chou, C. F. Huang, Y. T. Lin, C. S. Shih, S. Y. Han, et al. 2012. Age-related changes of task-specific brain activity in normal aging. Neurosci. Lett. 507:7883.
  • Hogan, M., G. Swanwick, J. Kaiser, M. Rowan, and B. Lawlor. 2003. Memory-related EEG power and coherence reductions in mild Alzheimer's disease. Int. J. Psychophysiol. 49:147163.
  • Huang, C., L. Wahlund, T. Dierks, P. Julin, B. Winblad, and V. Jelic. 2000. Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. Clin. Neurophysiol. 111:19611967.
  • Jelic, V., S. Johansson, O. Almkvist, M. Shigeta, P. Julin, A. Nordberg, et al. 2000. Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer's disease. Neurobiol. Aging 21:533540.
  • Jelles, B., P. Scheltens, W. van der Flier, E. Jonkman, F. da Silva, and C. Stam. 2008. Global dynamical analysis of the EEG in Alzheimer's disease: frequency-specific changes of functional interactions. Clin. Neurophysiol. 119:837841.
  • Jeong, J., J. Gore, and B. Peterson. 2001. Mutual information analysis of the EEG in patients with Alzheimer's disease. Clin. Neurophysiol. 112:827835.
  • Jin, S., P. Lin, and M. Hallett. 2010. Linear and nonlinear information flow based on time-delayed mutual information method and its application to corticomuscular interaction. Clin. Neurophysiol. 121:392401.
  • Kowalski, J., M. Gawel, A. Pfeffer, and M. Barcikowska. 2001. The diagnostic value of EEG in Alzheimer disease: correlation with the severity of mental impairment. J. Clin. Neurophysiol. 18:570.
  • Lai, C. L., R. T. Lin, L. M. Liou, and C. K. Liu. 2010. The role of event-related potentials in cognitive decline in Alzheimer's disease. Clin. Neurophysiol. 121:194199.
  • Moretti, D. 2004. Individual analysis of EEG frequency and band power in mild Alzheimer's disease. Clin. Neurophysiol. 115:299308.
  • Na, S., S. Jin, S. Kim, and B. Ham. 2002. EEG in schizophrenic patients: mutual information analysis. Clin. Neurophysiol. 113:19541960.
  • Osipova, D. 2003. Effects of scopolamine on MEG spectral power and coherence in elderly subjects. Clin. Neurophysiol. 114:19021907.
  • Penttilä, M., J. V. Partanen, H. Soininen, and P. Riekkinen. 1985. Quantitative analysis of occipital EEG in different stages of Alzheimer's disease. Electroencephalogr. Clin. Neurophysiol. 60:16.
  • Petersen, R., G. Smith, S. Waring, R. Ivnik, E. Tangalos, and E. Kokmen. 1999. Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56:303.
  • Petersen, R., R. Doody, A. Kurz, R. Mohs, J. Morris, P. Rabins, et al. 2001. Current concepts in mild cognitive impairment. Arch. Neurol. 58:1985.
  • Phillips, L. H., and P. Andrés. 2010. The cognitive neuroscience of aging: new findings on compensation and connectivity. Cortex 46:421424.
  • Pijnenburga, Y. A. L., Y. v d Made, A. M. van Cappellen van Walsum, D. L. Knol, P. Scheltens, and C. J. Stam. 2004. EEG synchronization likelihood in mild cognitive impairment and Alzheimer's disease during a working memory task. Clin. Neurophysiol. 115:13321339.
  • Sakuma, K., T. Murakami, and K. Nakashima. 2007. Short latency afferent inhibition is not impaired in mild cognitive impairment. Clin. Neurophysiol. 118:14601463.
  • Sauseng, P., J. Hoppe, W. Klimesch, C. Gerloff, and F. C. Hummel. 2007. Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. Eur. J. Neurosci. 25:587593.
  • Sauseng, P., W. Klimesch, W. R. Gruber, and N. Birbaumer. 2008. Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. Neuroimage 40:308317.
  • Schack, B., N. Vath, H. Petsche, H. G. Geissler, and E. Möller. 2002. Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int. J. Psychophysiol. 44:143163.
  • Schreiter-Gasser, U., T. Gasser, and P. Ziegler. 1993. Quantitative EEG analysis in early onset Alzheimer's disease: a controlled study. Electroencephalogr. Clin. Neurophysiol. 86:1522.
  • Singer, W. 1999. Neuronal synchrony: a versatile code review for the definition of relations? Neuron 24:4965.
  • Stam, C. 2005. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116:22662301.
  • Stam, C. J., Y. Van der Made, Y. Pijnenburg, and P. Scheltens. 2003. EEG synchronization in mild cognitive impairment and Alzheimer's disease. Acta Neurol. Scand. 108:9096.
  • Wang, Z. J., P. Lee, and M. J. McKeown. 2009. A novel segmentation, mutual information network framework for EEG analysis of motor tasks. Biomed. Eng. Online 8:9.