Literature Cited

  • 1
    Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. 2006; 69: 627642.
  • 2
    Wang M. The debate on energy and greenhouse gas emissions impacts of fuel ethanol, Presented at the Energy Systems Division Seminar, Argonne National Laboratory, Chicago, IL, Aug. 3, 2005.
  • 3
    Kim S, Dale BE. Life cycle assessment of various cropping systems utilized for producing biofuels: bioethanol and biodiesel. Biomass Bioenergy. 2005; 29: 426439.
  • 4
    Farrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, Kammen DM. Ethanol can contribute to energy and environmental goals. Science. 2006; 311: 506508.
  • 5
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials. Science. 2006; 311: 484489.
  • 6
    Somerville C. The billion-ton biofuels vision. Science. 2006; 312: 12771277.
  • 7
    Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 2007; 315: 804807.
  • 8
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol. 2005; 96: 673686.
  • 9
    Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science. 2007; 315: 801804.
  • 10
    Lynd LR, Wyman CE, Gerngross TU. Biocommodity engineering. Biotechnol Prog. 1999; 15: 777793.
  • 11
    Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. Coordinated development of leading biomass pretreatment technologies. Biores Technol. 2005; 96: 19591966.
  • 12
    Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Biores Technol. 2000; 74: 2533.
  • 13
    Palmqvist E, Grage H, Meinander NQ, Hahn-Hagerdal B. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng. 1999; 63: 4655.
  • 14
    Luo CD, Brink DL, Blanch HW. Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy. 2002; 22: 125138.
  • 15
    Lawford HG, Rousseau JD, Mohagheghi A, McMillan JD. Fermentation performance characteristics of a prehydrolyzate-adapted xylose-fermenting recombinant Zymomonas in batch and continuous fermentations. Appl Biochem Biotechnol. 1999; 77–79: 191204.
  • 16
    Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol. 1999; 24: 151159.
  • 17
    Oliva JM, Negro MJ, Saez F, Ballesteros I, Manzanares P, Gonzalez A, Ballesteros M. Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus. Process Biochem. 2006; 41: 12231228.
  • 18
    Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004; 66: 1026.
  • 19
    Ho NWY, Chang SF. Cloning of yeast xylulokinase gene by complementation of Escherichia coli and yeast mutations. Enzyme Microb Technol. 1989; 11: 417421.
  • 20
    Ho NWY, Chen ZD, Brainard AP. Genetically engineered Sacccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol. 1998; 64: 18521859.
  • 21
    Ho N, Chen ZD. Stable recombinant yeasts capable of effective fermentation of both glucose and xylose. WO 97/42307, 1997.
  • 22
    Ho N, Chen ZD, Brainard AP, Sedlak M. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. In: TsaoGT, editor. Advances in Biochemical Engineering/Biotechnology. Berlin, Heidelberg: Springer-Verlag; 1999.
  • 23
    Ho N, Tsao GT. Recombinant yeasts for effective fermentation of glucose and xylose, US Patent 5,789,210, 1998.
  • 24
    Banerjee N, Bhatnagar R, Viswanathan L. Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Eur J Appl Microbiol Biotechnol. 1981; 11: 226228.
  • 25
    Axe DD, Bailey JE. Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli. Biotechnol Bioeng. 1995; 47: 819.
  • 26
    Taherzadeh MJ, Niklasson C, Liden G. Acetic acid—friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae? Chem Eng Sci 1997; 52: 26532659.
  • 27
    Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Biores Technol. 2005; 96: 20262032.
  • 28
    Sedlak M, Ho NWY. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast. 2004; 21: 671684.
  • 29
    Sedlak M, Ho NWY. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose. Appl Biochem Biotechnol. 2004; 113–116: 403416.