SEARCH

SEARCH BY CITATION

Keywords:

  • Acidolysis;
  • medium chain fatty acids;
  • phospholipase A1;
  • modified phosphatidylcholine

Abstract

Phospholipids are a biologically and industrially important class of compounds whose physical properties can be improved for diverse applications by substitution of medium-chain fatty acids for their native fatty acid chains. In this study, phosphatidylcholine (PC) was enriched with medium-chain fatty acids (MCFAs) by acidolysis with phospholipase A1 (PLA1) immobilized on Duolite A568. Response surface methodology was employed to evaluate the effects of the molar ratio of substrates (PC to free MCFAs), enzyme loading, and reaction temperature on the incorporation of free MCFAs into PC and on PC recovery. Enzyme loading and molar ratio of substrates contributed positively, but temperature negatively, to the incorporation of free MCFAs into PC. Increases in enzyme loading and the molar ratio of PC to free MCFAs led to increased incorporation of the latter into the former, but increased temperature had the opposite effect. By contrast, an increase in enzyme loading led to decreased PC recovery. Increased temperature had also a negative effect on PC recovery. Optimal conditions for maximum incorporation and PC recovery were molar ratio of PC to free MCFAs of 1:16, enzyme loading of 16%, and 50°C. Under these conditions, the incorporation of free MCFAs was 41% and the PC recovery was 53%. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013