SEARCH

SEARCH BY CITATION

Keywords:

  • bioproduct purification;
  • megaporous materials;
  • ion-exchangers

Megaporous chromatographic materials were manufactured by a three-step procedure, including backbone synthesis, chemical grafting, and introduction of ion-exchange functionality. The backbone of the adsorbent cylindrical bodies was prepared by polymerization of methacrylic acid and poly(ethylene glycol) diacrylate at sub-zero temperatures. Grafting was performed employing glycidyl methacrylate and a chemical initiator, cerium ammonium nitrate. The degree of grafting was adjusted by modifying the concentration of the initiator in the reaction mixture to a range of values (23, 39, 62, 89, and 105%). Further, the pendant epoxy-groups generated by the previous step were reacted to cation- and anion-exchanging moieties utilizing known chemical routes. Infrared spectroscopy studies confirmed the incorporation of epoxy and ion-exchanger groups to the backbone material. Optimized materials were tested for chromatography applications with model proteins; the dynamic binding capacity, as recorded at 10% breakthrough and 2.0 × 10−4 m/s superficial velocity, were 350 and 58 mg/g for the cation-exchanger and the anion-exchanger material, respectively. These results may indicate that long tentacle-type polymer brushes were formed during grafting therefore increasing the ability of the megaporous body to efficiently capture macromolecules. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 386–393, 2013