Literature Cited

  • 1
    Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD. α-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat Chem Biol. 2011;7:894901.
  • 2
    Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, Andre B. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol. 2007;27:30653086.
  • 3
    Albers E, Larsson C, Liden G, Niklasson C, Gustafsson L. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol. 1996;62:31873195.
  • 4
    Freese S, Vogts T, Speer F, Schafer B, Passoth V, Klinner U. C- and N-catabolic utilization of tricarboxylic acid cycle-related amino acids by Scheffersomyces stipitis and other yeasts. Yeast. 2011;28:375390.
  • 5
    Slininger PJ, Dien BS, Gorsich SW, Liu ZL. Nitrogen source and mineral optimization enhance d-xylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Appl Microbiol Biotechnol. 2006;72:12851296.
  • 6
    Ma XJ, Li H, Shao LJ, Shen J, Song X. Effects of nitrogen sources on production and composition of sophorolipids by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576. Appl Microbiol Biotechnol. 2011;91:16231632.
  • 7
    Boer VM, Tai SL, Vuralhan Z, Arifin Y, Walsh MC, Piper MD, de Winde JH, Pronk JT, Daran JM. Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res. 2007;7:604620.
  • 8
    Navarathna DHMLP, Das A, Morschhauser J, Nickerson KW, Roberts DD. Dur3 is the major urea transporter in Candida albicans and is coregulated with the urea amidolyase Dur1,2. Microbiology-Sgm. 2011;157:270279.
  • 9
    Magasanik B. Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot Cell. 2003;2:827829.
  • 10
    Sumrada RA, Cooper TG. Urea carboxylase and allophanate hydrolase are components of a multifunctional protein in yeast. J Biol Chem. 1982;257:91199127.
  • 11
    Strope PK, Nickerson KW, Harris SD, Moriyama EN. Molecular evolution of urea amidolyase and urea carboxylase in fungi. BMC Evol Biol. 2011;11:80.
  • 12
    Nissen TL, Kielland-Brandt MC, Nielsen J, Villadsen J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng. 2000;2:6977.
  • 13
    Coulon J, Husnik JI, Inglis DL, van der Merwe GK, Lonvaud A, Erasmus DJ, van Vuuren HJJ. Metabolic engineering of Saccharomyces cerevisiae to minimize the production of ethyl carbamate in wine. Am J Enol Vitic. 2006;57:113124.
  • 14
    Asadollahi MA, Maury J, Patil KR, Schalk M, Clark A, Nielsen J. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng. 2009;11:328334.
  • 15
    Roca C, Nielsen J, Olsson L. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyes cerevisiae improves ethanol production. Appl Environ Microbiol. 2003;69:47324736.
  • 16
    Xu P, Qiu JH, Gao C, Ma CQ. Biotechnological routes to pyruvate production. J Biosci Bioeng. 2008;105:169175.
  • 17
    Li Y, Chen J, Liang DF, Lun SY. Effect of nitrogen source and nitrogen concentration on the production of pyruvate by Torulopsis glabrata. J Biotechnol. 2000;81:2734.
  • 18
    Li Y, Chen J, Lun SY, Rui XS. Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels. Appl Microbiol Biotechnol. 2001;55:680685.
  • 19
    Liu LM, Li Y, Li HZ, Chen J. Manipulating the pyruvate dehydrogenase bypass of a multi-vitamin auxotrophic yeast Torulopsis glabrata enhanced pyruvate production. Lett Appl Microbiol. 2004;39:199206.
  • 20
    Subileau M, Schneider R, Salmon JM, Degryse E. Nitrogen catabolite repression modulates the production of aromatic thiols characteristic of Sauvignon Blanc at the level of precursor transport. FEMS Yeast Res. 2008;8:771780.
  • 21
    Zhang J, Vaga S, Chumnanpuen P, Kumar R, Vemuri GN, Aebersold R, Nielsen J. Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol. 2011;7:545.
  • 22
    Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, van Gulik WM, Heijnen JJ. Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem. 2009;81:73797389.
  • 23
    Vaseghi S, Baumeister A, Rizzi M, Reuss M. In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab Eng. 1999;1:128140.
  • 24
    Sato K, Yoshida Y, Hirahara T, Ohba T. On-line measurement of intracellular ATP of Saccharomyces cerevisiae and pyruvate during sake mashing. J Biosci Bioeng. 2000;90:294301.
  • 25
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402408.
  • 26
    Bruinenberg PM, van Dijken JP, Scheffers WA. An enzymic analysis of NADPH production and consumption in Candida utilis. J Gen Microbiol. 1983;129:965971.
  • 27
    Beltran G, Novo M, Rozes N, Mas A, Guillamon JM. Nitrogen catabolite repression in Saccharomyces cerevisiae during wine fermentations. FEMS Yeast Res. 2004;4:625632.
  • 28
    Jeppsson M, Johansson B, Jensen PR, Hahn-Hagerdal B, Gorwa-Grauslund MF. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast. 2003;20:12631272.
  • 29
    Collard F, Collet J-F, Gerin I, Veiga-da-Cunha M, Van Schaftingen E. Identification of the cDNA encoding human 6-phosphogluconolactonase, the enzyme catalyzing the second step of the pentose phosphate pathway. FEBS Lett. 1999;459:223226.
  • 30
    Moritz B, Striegel K, de Graaf AA, Sahm H. Kinetic properties of the glucose-6-phosphate and 6 phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur J Biochem. 2000;267:34423452.
  • 31
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265275.
  • 32
    Liu L, Li Y, Du G, Chen J. Redirection of the NADH oxidation pathway in Torulopsis glabrata leads to an enhanced pyruvate production. Appl Microbiol Biotechnol. 2006;72:377385.
  • 33
    Zhou J, Liu L, Shi Z, Du G, Chen J. ATP in current biotechnology: regulation, applications and perspectives. Biotechnol Adv. 2008;27:94101.
  • 34
    Murray DB, Haynes K, Tomita M. Redox regulation in respiring Saccharomyces cerevisiae. Biochim Biophys Acta. 2011;1810:945958.
  • 35
    Xu N, Liu L, Zou W, Liu J, Hua Q, Chen J. Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata. Mol Biosyst. 2013;9:205216.
  • 36
    Liu LM, Li Y, Zhu Y, Du GC, Chen J. Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level. Metab Eng. 2007;9:2129.
  • 37
    Yue GJ, Yu JL, Zhang X, Tan TW. The influence of nitrogen sources on ethanol production by yeast from concentrated sweet sorghum juice. Biomass Bioenerg. 2012;39:4852.
  • 38
    Palnitkar S, Lachke A. Effect of nitrogen sources on oxidoreductive enzymes and ethanol production during d-xylose fermentation by Candida shehatae. Can J Microbiol. 1992;38:258260.
  • 39
    Newman-Tancredi A, Cussac D, Marini L, Touzard M, Millan MJ. h5-HT(1B) receptor-mediated constitutive Galphai3-protein activation in stably transfected Chinese hamster ovary cells: an antibody capture assay reveals protean efficacy of 5-HT. Br J Pharmacol. 2003;138:10771084.
  • 40
    Magasanik B, Kaiser CA. Nitrogen regulation in Saccharomyces cerevisiae. Gene 2002;290:118.
  • 41
    Broach JR. Nutritional control of growth and development in yeast. Genetics. 2012;192:73105.
  • 42
    Usaite R, Patil KR, Grotkjaer T, Nielsen J, Regenberg B. Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, l-alanine, or l-glutamine limitation. Appl Environ Microbiol. 2006;72:61946203.
  • 43
    Cooper TG. 9 Integrated regulation of the nitrogen-carbon interface. In: Winderickx J, Taylor P, editors. Nutrient-Induced Responses in Eukaryotic Cells, Vol. 7. Berlin: Springer; 2004:225257.
  • 44
    Miller SM, Magasanik B. Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol. 1990;172:49274935.
  • 45
    Bruinenberg PM, Van Dijken JP, Scheffers WA. A theoretical analysis of NADPH production and consumption in yeasts. Microbiology. 1983;129:953964.
  • 46
    Moreira dos Santos M, Thygesen G, Kotter P, Olsson L, Nielsen J. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. FEMS Yeast Res. 2003;4:5968.
  • 47
    Garcia-Campusano F, Anaya VH, Robledo-Arratia L, Quezada H, Hernandez H, Riego L, Gonzalez A. ALT1-encoded alanine aminotransferase plays a central role in the metabolism of alanine in Saccharomyces cerevisiae. Can J Microbiol. 2009;55:368374.
  • 48
    Yan D. Protection of the glutamate pool concentration in enteric bacteria. Proc Natl Acad Sci USA. 2007;104:94759480.