Literature Cited

  • 1
    Guideline on virus safety evaluation of biotechnological investigational medicinal products. London, UK: European Medicines Agency. 2008; Doc. Ref. EMEA/CHMP/BWP/398498/2005.
  • 2
    Points to consider in the manufacture and testing of monoclonal antibody products for human use. Rockville, Maryland: Food and Drug Administration. 1997.
  • 3
    Guidance on Viral Safety Evaluation of Biotechnology Products Derived From Cell Lines of Human or Animal Origin, Q5A. Geneva, Switzerland: International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. 1998.
  • 4
    Garnick RL. Experience with viral contamination in cell culture, Dev Biol Stand. 2006;88:4956.
  • 5
    Skrine J. A biotech production facility contamination case study—minute mouse virus, PDA J Pharm Sci Technol. 2011;65:599611.
  • 6
    Moody M, Alves W, Varghese J, Khan F. Mouse minute virus (MMV) contamination—A case study: Detection, root cause determination, and corrective actions, PDA J Pharm Sci Technol. 2011;65:580588.
  • 7
    Miesegaes G, Bailey M, Willkommen H, Chen Q, Roush D, Blümel J, Brorson K. Proceedings of the 2009 Viral Clearance symposium, Dev Biol. 2010;133:7791.
  • 8
    Hongo-Hirasaki T, Komuro M, Ide S. Effect of antibody solution conditions on filter performance for virus removal filter Planova 20N, Biotechnol Prog. 2010;26:10801087.
  • 9
    Asher D, Slocum A, Bergmann K, Genest P, Katz A, Morais J, Lawrence C, Greenhalgh P. Predicting virus filtration performance with virus spike characterization, Bioprocess Int. 2011;9:2637.
  • 10
    Hongo-Hirasaki T, Yamaguchi K, Yanagida K, Hayashida H, Ide S. Effects of varying virus-spiking conditions on a virus-removal filter Planova™ 20N in a virus validation study of antibody solutions, Biotechnol Prog. 2011;27:162169.
  • 11
    Lutz H, Chang W, Blandl T, Ramsey G, Parella J, Fisher J, Gefroh E. Qualification of a novel inline spiking method for virus filter validation, Biotechnol Prog. 2011;27:121128.
  • 12
    Bolton G, Basha J, Lacasse D. Achieving high mass-throughput of therapeutic proteins through parvovirus retentive filters, Biotechnol Prog. 2011;26:16711677.
  • 13
    Slocum A, Burnham M, Genest P, Venkiteshwaran A, Chen D, Hughes J. Impact of virus preparation quality on parvovirus filter performance, Biotechnol Bioeng. 2013;110:229239.
  • 14
    Bolton G, Cabatingan M, Rubino M, Lute S, Brorson K, Bailey M. Normal-flow virus filtration: Detection and assessment of the endpoint in bio-processing, Biotechnol Appl Biochem. 2005;42:133142.
  • 15
    Lute S, Bailey M, Combs J, Sukumar M, Brorson K. Phage passage after extended processing in small-virus-retentive filters, Biotechnol Appl Biochem. 2007;47:141151.
  • 16
    Miesegaes G, Lute S, Brorson K. Analysis of viral clearance unit operations for monoclonal antibodies, Biotechnol Bioeng. 2010;106:238246.
  • 17
    Zhao X, Bailey MR, Emery WR, Lambooy PK, Chen D. Evaluation of viral removal by nanofiltration using real-time quantitative polymerase chain reaction, Biotechnol Appl Biochem. 2007;47:97104.
  • 18
    Willcommen H, Blümel J, Brorson K, Chen D, Chen Q, Gröner A, Kreil T, Robertson J, Ruffing M, Ruiz S. Meeting Report—Workshop on virus removal by filtration: Trends and new developments, PDA J Pharm Sci Technol. 2013;67:98104.
  • 19
    Lute S, Bailey M, Combs J, Sukumar M, Brorson K. Phage passage after extended processing in mall-virus retentive filters, Biotechnol Appl Biochem 2007;47:141151.