Literature Cited

  • 1
    Lim M, Ye H, Panoskaltsis N, Drakakis EM, Yue X, Cass AE, Radomska A, Mantalaris A. Intelligent bioprocessing for hematopoietic cell cultures using monitoring and design of experiments. Biotechnol Adv. 2007;25:353368.
  • 2
    Kirouac D, Zandstra P. The systematic production of cells for cell therapies. Cell Stem Cell. 2008;3:369381.
  • 3
    Placzek M, Chung I, Macedo H, Ismail S, Mortera Blanco T, Lim M, Cha J, Fauzi I, Kang Y, Yeo D, Ma C, Polak J, Panoskaltsis N, Mantalaris A. Stem cell bioprocessing: Fundamentals and principles. J R Soc Interface. 2009;6:209232.
  • 4
    Williams D, Thomas R, Hourd P, Chandra A, Ratcliffe E, Liu Y, Rayment E, Archer J. Precision manufacturing for clinical-quality regenerative medicines. Philos Transact A Math Phys Eng Sci. 2012;370:39243949.
  • 5
    Berridge M, Tan A. Characterization of the cellular reduction of 3-(4, 5-dimethylthiazol-2-yl)−2, 5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in Mtt reduction. Arch Biochem Biophys. 1993;303:474482.
  • 6
    Ratcliffe E, Thomas RJ, Williams DJ. Current understanding and challenges in bioprocessing of stem cell-based therapies for regenerative medicine. Br Med Bull. 2011;100:137155.
  • 7
    Liu Y, Liu T, Fan X, Ma X, Cui Z. Ex vivo expansion of hematopoietic stem cells derived from umbilical cord blood in rotating wall vessel. J Biotechnol. 2006;124:592601.
  • 8
    Nielsen L. Bioreactors for hematopoietic cell culture. Annu Rev Biomed Eng. 1999;1:129152.
  • 9
    Cabrita G, Ferreira B, Lobato da Silva C, Gonçalves R, Almeida-Porada G, Cabral J. Hematopoietic stem cells: From the bone to the bioreactor. Trends Biotechnol. 2003;21:233240.
  • 10
    Thomson H. Bioprocessing of embryonic stem cells for drug discovery. Trends Biotechnol. 2007;25:224230.
  • 11
    Zeilinger K, Schreiter T, Darnell M, Söderdahl T, Lübberstedt M, Dillner B, Knobeloch D, Nüssler A, Gerlach J, Andersson T. Scaling down of a clinical three-dimensional perfusion multi-compartment hollow fiber liver bioreactor developed for extracorporeal liver support to an analytical scale device useful for hepatic pharmacological in vitro studies. Tissue Eng Part C. 2011;17:549556.
  • 12
    Sardonini C, Wu Y. Expansion and differentiation of human hematopoietic cells from static cultures through small-scale bioreactors. Biotechnol Prog. 1993;9:131137.
  • 13
    Houssler G, Miki T, Schmelzer E, Pekor C, Zhang X, Kang L, Voskinarian-Berse V, Abbot S, Zeilinger K, Gerlach J. Compartmental hollow fiber capillary membrane–based bioreactor technology for in vitro studies on red blood cell lineage direction of hematopoietic stem cells. Tissue Eng Part C. 2012;18:133142.
  • 14
    Starling E.H. On the absorption of fluid from the connective tissue spaces. J Physiol (Lond). 1896;19:312326.
  • 15
    Gramer M, Poeschl D, Conroy M, Hammer B. Effect of harvesting protocol on performance of a hollow fiber bioreactor. Biotechnol Bioeng. 2000;65:334340.
  • 16
    Pinzon N, Cook A, Ju L-K. Continuous rhamnolipid production using denitrifying Pseudomonas aeruginosa cells in hollow-fiber bioreactor. Biotechnol Prog. 2013;29:352358.
  • 17
    Hoesli C, Luu M, Piret J. A novel alginate follow fiber bioreactor process for cellular therapy applications. Biotechnol Prog. 2009;25:17401751.
  • 18
    Schmelzer E, Mutig K, Schrade P, Bachmann S, Gerlach J, Zeilinger K. Effect of human patient plasma ex vivo treatment on gene expression and progenitor cell activation of primary human liver cells in multi-compartment 3d perfusion bioreactors for extra-corporeal liver support. Biotechnol Bioeng. 2009;103:817827.