Literature Cited

  • 1
    Chisti Y. Biodiesel from algae. Biotechnol Adv. 2007;25:294306.
  • 2
    Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65:635648.
  • 3
    Görs M, Schumann R, Hepperle D, Karsten U. Quality analysis of commercial Chlorella products used as dietary supplement in human nutrition. J Appl Phycol. 2009;22:265276.
  • 4
    Naumann T, Çebi Z, Podola B, Melkonian M. Growing microalgae as aquaculture feeds on twin-layers: a novel solid-state photobioreactor. J Appl Phycol. 2013;25:14131420.
  • 5
    Posadas E, García-Encina P-A, Soltau A, Domínguez A, Díaz I, Muñoz R. Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresource technol. 2013;139C:5058.
  • 6
    Yun Y, Lee SB, Park JM, Lee C, Yang J. Carbon dioxide fixation by algal cultivation using wastewater nutrients J Chem Technol Biotechnol. 1997;69:451455.
  • 7
    Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes, and fermenters. J Biotechnol. 1999;70:313321.
  • 8
    Andersen RA. Algal Culturing Techniques. London: Elsevier Academic Press; 2005.
  • 9
    Zhu CJ, Lee YK. Determination of biomass dry weight of marine microalgae. J Appl Phycol. 1997;9:189194.
  • 10
    Brindley C, Acien FG, Fernandez-Sevilla JM. The oxygen evolution methodology affects photosynthetic rate measurements of microalgae in well-defined light regimes. Biotechnol Bioeng. 2010;106:228237.
  • 11
    Genty B, Briantais J-M, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA-Gen Subjects. 1989;990:8792.
  • 12
    Campbell D, Hurry V, Clarke AK, Gustafsson P, Oquist G. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol R. 1998;62:667683.
  • 13
    Ritchie RJ, Larkum AWD. Modelling photosynthesis in shallow algal production ponds. Photosynthetica. 2012;50:481500.
  • 14
    Blankenship RE. Molecular Mechanisms of Photosynthesis. Oxford: Blackwell Science Ltd; 2002.
  • 15
    Richmond A, Lichtenberg E, Stahl B, Vonshak A. Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J Appl Phycol. 1990;2:195206.
  • 16
    Yoder JA, Kennelly MA. What have we learned about ocean variability from satellite ocean color imagers? Oceanography. 2006;19:152171.
  • 17
    Allison DB, Stramski D, Mitchell BG. Empirical ocean color algorithms for estimating particulate organic carbon in the Southern Ocean. J Geophys Res. 2010;115:C10044.
  • 18
    Kazemipour F, Méléder V, Launeau P. Optical properties of microphytobenthic biofilms (MPBOM): biomass retrieval implication. J Quant Spectrosc Ra. 2011;112:131142.
  • 19
    Méléder V, Barillé L, Launeau P, Carrère V, Rincé Y. Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures Remote Sens Environ. 2003;88:386400.
  • 20
    Jung S-K, Lee SB. In situ monitoring of cell concentration in a photobioreactor using image analysis: comparison of uniform light distribution model and artificial neural networks. Biotechnol Progr. 2006;22:14431450.
  • 21
    Murphy TE, Macon K, Berberoglu H. Multispectral image analysis for algal biomass quantification. Biotechnol Progr. 2013;29:808816.
  • 22
    Reichardt TA, Collins AM, Garcia OF, Ruffing AM, Jones HDT, Timlin JA. Spectroradiometric monitoring of Nannochloropsis salina growth. Algal Res. 2012;1:2231.
  • 23
    Carter GA. Responses of leaf spectral reflectance to plant stress. Amer J Botany. 1993;80:239243.
  • 24
    Carter GA, Miller RL. Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands. Remote Sens Environ. 1994;302:295301.
  • 25
    Gitelson AA, Kaufman YJ, Merzlyak MN. Use of a green channel in remote sensing of global vegetation from EOS-MODIS Remote Sens Environ. 1996;58:289298.
  • 26
    Berberoglu H, Pilon L. Experimental measurements of the radiation characteristics of Anabaena variabilis ATCC 29413-U and Rhodobacter sphaeroides ATCC 49419. Int J Hydrogen Energ. 2007;32:47724785.
  • 27
    Tsygankov AA, Serebryakova LT, Rao KK, Hall DO. Acetylene reduction and hydrogen photoproduction by wild-type and mutant strains of Anabaena at different CO2 and O2 concentrations. FEMS Microbiol Lett. 1998;167:1317.
  • 28
    Gaffney AM, Markov SA, Gunasekaran M. Utilization of cyanobacteria in photobioreactors for orthophosphate removal from water. Appl Biochem Biotechnol. 2001;91–93:185193.
  • 29
    Berberoglu H, Jay J, Pilon L. Effect of nutrient media on photobiological hydrogen production by Anabaena variabilis ATCC 29413. Int J Hydrogen Energ. 2008;33:11721184.
  • 30
    Fogg GE, Stewart WDP, Fay P, Walsby AE. The Blue-green Algae. London: Academic Press; 1973.
  • 31
    Murphy T, Berberoglu H. Effect of algae pigmentation on photobioreactor productivity and scale-up: a light transfer perspective. J Quant Spectrosc Ra. 2011;112:28262834.
  • 32
    Poynton C. Digital Video and HDTV: Algorithms and Interfaces. San Francisco, CA: Morgan Kaufmann Publishers; 2003.
  • 33
    Masojidek J, Grobbelaar JA, Pechar L, Koblizek M. Photosystem II electron transport rates and oxygen production in natural waterblooms of freshwater cyanobacteria during a diel cycle. J Plankton Res. 2001;23:5766.