Literature Cited

  • 1
    Aggarwal S. What's fueling the biotech engine-2011 to 2012. Nat. Biotechnol. 2012;30:11911197.
  • 2
    Drucker A, Skedgel C, Virik K, Rayson D, Sellon M, Younis T. The cost burden of trastuzumab and bevacizumab therapy for solid tumours in Canada. Curr Oncol. 2008;15:136142.
  • 3
    Tappenden P, Jones R, Paisley S, Carroll C. The cost-effectiveness of bevacizumab in the first-line treatment of metastatic colorectal cancer in England and Wales. Eur J Cancer 2007;43:24872494.
  • 4
    Cohn DE, Kim KH, Resnick KE, O'Malley DM, Straughn JM. At what cost does a potential survival advantage of bevacizumab make sense for the primary treatment of ovarian cancer? a cost-effectiveness analysis. J Clin Oncol. 2011;29:12471251.
  • 5
    Garrison LP, Veenstra DL. The economic value of innovative treatments over the product life cycle: The case of targeted trastuzumab therapy for breast cancer. Value Health 2009;12:11181123.
  • 6
    Leung HWC, Chan ALF, Leung MSH, Lu CL. Systematic review and quality assessment of cost-effectiveness analysis of pharmaceutical therapies for advanced colorectal cancer. Ann Pharmacother. 2013;47:506518.
  • 7
    Ford J, Cummins E, Sharma P, Elders A, Stewart F, Johnston R, Royle P, Jones R, Mulatero C, Todd R, Mowatt G. Systematic review of the clinical effectiveness and cost-effectiveness, and economic evaluation, of denosumab for the treatment of bone metastases from solid tumours. Health Technol Assess. 2013;17:1+.
  • 8
    Mariotto AB, Yabroff KR, Shao YW, Feuer EJ, Brown ML. Projections of the cost of cancer care in the United States: 2010–2020. J Natl Cancer Inst 2011;103.
  • 9
    Stein JD, Newman-Casey PA, Kim DD, Nwanyanwu KH, Johnson MW, Hutton DW. Cost-effectiveness of various interventions for newly diagnosed diabetic macular edema. Ophthalmology 2013;120:18351842.
  • 10
    Main C, Pitt M, Moxham T, Stein K. The clinical effectiveness and cost-effectiveness of rituximab for the first-line treatment of chronic lymphocytic leukaemia: An evidence review of the submission from Roche. Health Technol Assess. 2010;14:2732.
  • 11
    Khawli LA, Goswami S, Hutchinson R, Kwong ZW, Yang J, Wang X, Yao Z, Sreedhara A, Cano T, Tesar D, Nijem I, Allison DE, Wong PY, Kao Y-H, Quan C, Joshi A, Harris RJ, Motchnik P. Charge variants in IgG1 Isolation, characterization, in vitro binding properties and pharmacokinetics in rats. Mabs 2010;2:613624.
  • 12
    Horvath B, Mun M, Laird MW. Characterization of a monoclonal antibody cell culture production process using a quality by design approach. Mol. Biotechnol. 2010;45:203206.
  • 13
    Sharifi J, Khawli LA, Hornick JL, Epstein AL. Improving monoclonal antibody pharmacokinetics via chemical modification. Q J Nucl Med 1998;42:242249.
  • 14
    Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, Nanami M, Sekimori Y, Nabuchi Y, Aso Y, Hattori K. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel 2010;23:385392.
  • 15
    Schiestl M, Stangler T, Torella C, Cepeljnik T, Toll H, Grau R. Acceptable changes in quality attributes of glycosylated biopharmaceuticals. Nat Biotechnol 2011;29.
  • 16
    Chen G, Ha S, Rustandi RR. Characterization of glycoprotein biopharmaceutical products by Caliper LC90 CE-SDS Gel Technology. In Beck A, editor. Glycosylation engineering of biopharmaceuticals: Methods and Protocols. New York: Springer; 2013: Vol. 988, 199209.
  • 17
    Druhmann D, Reinhard S, Schwarz F, Schaaf C, Greisl K, Nötzel T. In Hauser H, editor. Utilizing Roch Cedex bio analyzer for in process monitoring during biotech production, ESACT Meeting on Cell Based Technologies, Vienna, Austria, 2011; BioMed Central Ltd: Vienna, Austria, 2011.
  • 18
    Yin HF, Killeen K. The fundamental aspects and applications of Agilent HPLC-Chip. J Sep Sci. 2007;30:14271434.
  • 19
    Derfus GE, Abramzon D, Tung M, Chang D, Kiss R, Amanullah A. Cell culture monitoring via an auto-sampler and an integrated multi-functional off-line analyzer. Biotechnol Prog. 2010;26:284292.
  • 20
    Scott C. A convergence of new products and technologies changes the game. Biopharm Int Supplement 2010;8:1015.
  • 21
    Takahashi N, Ishioka N, Takahashi Y, Putnam FW. Automated tandem high-performance liquid-chromatographic system for separation of extremely complex peptide mixtures. J. Chromatogr. 1985;326:407418.
  • 22
    Wagner K, Miliotis T, Marko-Varga G, Bischoff R, Unger KK. An automated on-line multidimensional HPLC system for protein and peptide mapping with integrated sample preparation. Anal Chem. 2002;74:809820.
  • 23
    Min JZ, Toyo'oka T, Kurihara T, Fukushima T, Inagaki S. Fully automated two-dimensional high-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry for the determination of oligosaccharides in glycopeptides after enzymic fluorescence labeling. J Chromatogr A 2007;1160:120127.
  • 24
    Yamashita R, Fujiwara Y, Ikari K, Hamada K, Otomo A, Yasuda K, Noda M, Kaburagi Y. Extracellular proteome of human hepatoma cell, HepG2 analyzed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. Mol Cell Biochem 2007;298:8392.
  • 25
    Kim WD, Tokunaga M, Ozaki H, Ishibashi T, Honda K, Kajiura H, Fujiyama K, Asano R, Kumagai I, Omasa T, Ohtake H. Glycosylation pattern of humanized IgG-like bispecific antibody produced by recombinant CHO cells. Appl Microbiol Biotechnol 2010;85:535542.
  • 26
    Kubelka V, Altmann F, Marz L. The asparagine-linked carbohydrate of honeybee venom hyaluronidase. Glycoconj J 1995;12:7783.