SEARCH

SEARCH BY CITATION

Keywords:

  • sustainable energy;
  • xylose;
  • hydrolysates;
  • Escherichia coli

Bioethanol produced from lignocellulosic materials has the potential to be economically feasible, if both glucose and xylose released from cellulose and hemicellulose can be efficiently converted to ethanol. Saccharomyces spp. can efficiently convert glucose to ethanol; however, xylose conversion to ethanol is a major hurdle due to lack of xylose-metabolizing pathways. In this study, a novel two-stage fermentation process was investigated to improve bioethanol productivity. In this process, xylose is converted into biomass via non-Saccharomyces microorganism and coupled to a glucose-utilizing Saccharomyces fermentation. Escherichia coli was determined to efficiently convert xylose to biomass, which was then killed to produce E. coli extract. Since earlier studies with Saccharomyces pastorianus demonstrated that xylose isomerase increased ethanol productivities on pure sugars, the addition of both E. coli extract and xylose isomerase to S. pastorianus fermentations on pure sugars and corn stover hydrolysates were investigated. It was determined that the xylose isomerase addition increased ethanol productivities on pure sugars but was not as effective alone on the corn stover hydrolysates. It was observed that the E. coli extract addition increased ethanol productivities on both corn stover hydrolysates and pure sugars. The ethanol productivities observed on the corn stover hydrolysates with the E. coli extract addition was the same as observed on pure sugars with both E. coli extract and xylose isomerase additions. These results indicate that the two-stage fermentation process has the capability to be a competitive alternative to recombinant Saccharomyces cerevisiae-based fermentations. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:300–310, 2014