Growth and functional harvesting of human mesenchymal stromal cells cultured on a microcarrier-based system

Authors

  • Sâmia R. Caruso,

    1. Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
    Search for more papers by this author
  • Maristela D. Orellana,

    1. Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
    Search for more papers by this author
  • Amanda Mizukami,

    1. Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
    Search for more papers by this author
  • Taisa R. Fernandes,

    1. Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
    Search for more papers by this author
  • Aparecida M. Fontes,

    1. Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
    2. Dept. of Genetics, School of Medicine of Ribeirão Preto, Ribeirão Preto-SP, Brazil
    Search for more papers by this author
  • Claudio A. T. Suazo,

    1. Dept. of Chemistry Engineering, Federal University of São Carlos, São Carlos, Brazil
    Search for more papers by this author
  • Viviane C. Oliveira,

    1. Dept. of Dental Materials and Prosthodontics, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
    Search for more papers by this author
  • Dimas T. Covas,

    1. Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
    2. Dept. of Medical Clinic, Faculty of Medicine of Ribeirão Preto, Ribeirão Preto-SP, Brazil
    Search for more papers by this author
  • Kamilla Swiech

    Corresponding author
    1. Dept. of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
    Search for more papers by this author

Abstract

Human mesenchymal stromal cells (hMSCs) cells are attractive for applications in tissue engineering and cell therapy. Because of the low availability of hMSCs in tissues and the high doses of hMSCs necessary for infusion, scalable and cost-effective technologies for in vitro cell expansion are needed to produce MSCs while maintaining their functional, immunophenotypic and cytogenetic characteristics. Microcarrier-based culture systems are a good alternative to traditional systems for hMSC expansion. The aim of the present study was to develop a scalable bioprocess for the expansion of human bone marrow mesenchymal stromal cells (hBM-MSCs) on microcarriers to optimize growth and functional harvesting. In general, the results obtained demonstrated the feasibility of expanding hBM-MSCs using microcarrier technology. The maximum cell concentration (n = 5) was ∼4.82 ± 1.18 × 105 cell mL−1 at day 7, representing a 3.9-fold increase relative to the amount of inoculated cells. At the end of culture, 87.2% of the cells could be harvested (viability = 95%). Cell metabolism analysis revealed that there was no depletion of important nutrients such as glucose and glutamine during culture, and neither lactate nor ammonia byproducts were formed at inhibitory concentrations. The cells that were recovered after the expansion retained their immunophenotypic and functional characteristics. These results represent an important step toward the implementation of a GMP-compliant large-scale production system for hMSCs for cellular therapy. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:889–895, 2014

Ancillary