Advertisement

Efficient purification of antiproliferative polysaccharides from Hypsizigus marmoreus with radial flow chromatography

Authors


Abstract

The increasing commercial significance of natural polysaccharides for use in medicinal products is stimulating the development of efficient and easy scale-up techniques for polysaccharide purification. In this research, the crude polysaccharides from submerged cultivation broth of Hypsizigus marmoreus were purified using radial flow chromatography (RFC), and the antiproliferative activity of the purified fractions was evaluated in vitro. DEAE Sepharose CL-6B was selected to be packed in the RFC column based on its good resolution, physical stability, and low cost. Compared with axial flow chromatography (AFC), an efficient chromatographic process with significantly less time and buffer consumption but yielding higher polysaccharide recovery and resolution was established in RFC, which could clearly purify the crude polysaccharides into different fractions. An acceptable linear scale-up effect of RFC from 100 to 500 mL was successfully achieved without loss of resolution and enhancement of time consumption. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in cell cultures indicated that the purified polysaccharide fractions possess moderate antiproliferative activities in three different human cancer cell lines, but have significantly lower cytotoxicity in normal human cell lines in vitro. Among the polysaccharide fractions, the main purified acidic fraction W-I could be considered as a novel potential antitumor agent candidate for several tumors, especially for human alveolar epithelial tumors. This research confirmed for the first time that RFC would be a new fast and efficient tool for purification of polysaccharides into different fractions, both at laboratory and commercial scales. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:872–878, 2014

Ancillary