Selective extraction of polyunsaturated triacylglycerols using a novel ionic liquid precursor immobilized on a mesoporous complexing adsorbent



Mesoporous silica (SBA-15) synthesized by using Pluronic123 as the structure-directing template was functionalized by imidazolium-based ionic liquid precursors. Silver salts were then immobilized onto the supported ionic liquids using the incipient wetness impregnation technique. The separation of unsaturated species was achieved through the reversible and specific interaction between silver ions and carbon–carbon double bonds. This adsorbent was examined for the selective separation of polyunsaturated triacylglycerols (PUTAG) using High Pressure Liquid Chromatography (HPLC) with Evaporative Light Scattering Detection (ELSD) as the quantification methodology. AgBF4/SBA15·HPSiOEtIM·PF6 showed an adsorption capacity for linolenin of about 217 mg adsorbed/gram of sorbent. This adsorbent had good selectivity and a high capacity for the most highly unsaturated triacylglycerol when applied to a mixture of triacylglycerols with varying degrees of unsaturation. Consequently, a stepwise methodology was also developed to increase the recovery of the adsorbed components. This adsorbent retained its selectivity and capacity when recycled up to five times. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009