Experimental characterization of flow conditions in 2- and 20-l bioreactors with wave-induced motion

Authors

  • Andreas Kalmbach,

    1. Professur für Strömungsmechanik, Bioprocess Engineering Division, Helmut-Schmidt-Universität Hamburg, D-22043 Hamburg, Germany
    2. Max-Planck-Institut für Dynamik Komplexer Technischer Systeme, Bioprocess Engineering Division, D-39106 Magdeburg, Germany
    Search for more papers by this author
  • Róbert Bordás,

    1. Institut für Strömungstechnik und Thermodynamik, Bioprocess Engineering Division, Lehrstuhl für Strömungsmechanik und Strömungstechnik, Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg, Germany
    Search for more papers by this author
  • Alper A. Öncül,

    1. Institut für Strömungstechnik und Thermodynamik, Bioprocess Engineering Division, Lehrstuhl für Strömungsmechanik und Strömungstechnik, Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg, Germany
    Search for more papers by this author
  • Dominique Thévenin,

    Corresponding author
    1. Institut für Strömungstechnik und Thermodynamik, Bioprocess Engineering Division, Lehrstuhl für Strömungsmechanik und Strömungstechnik, Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg, Germany
    • Institut für Strömungstechnik und Thermodynamik, Lehrstuhl für Strömungsmechanik und Strömungstechnik, Otto-von-Guericke-Universität Magdeburg, D-39106 Magdeburg, Germany
    Search for more papers by this author
  • Yvonne Genzel,

    1. Max-Planck-Institut für Dynamik Komplexer Technischer Systeme, Bioprocess Engineering Division, D-39106 Magdeburg, Germany
    Search for more papers by this author
  • Udo Reichl

    1. Max-Planck-Institut für Dynamik Komplexer Technischer Systeme, Bioprocess Engineering Division, D-39106 Magdeburg, Germany
    Search for more papers by this author

Abstract

Quantifying the influence of flow conditions on cell viability is essential for a successful control of cell growth and cell damage in major biotechnological applications, such as in recombinant protein and antibody production or vaccine manufacturing. In the last decade, new bioreactor types have been developed. In particular, bioreactors with wave-induced motion show interesting properties (e.g., disposable bags suitable for cGMP manufacturing, no requirement for cleaning and sterilization of cultivation vessels, and fast setup of new production lines) and are considered in this study. As an additional advantage, it is expected that cultivations in such bioreactors result in lower shear stress compared with conventional stirred tanks. As a consequence, cell damage would be reduced as cell viability is highly sensitive to hydrodynamic conditions. To check these assumptions, an experimental setup was developed to measure the most important flow parameters (liquid surface level, liquid velocity, and liquid and wall shear stress) in two cellbag sizes (2 and 20 L) of Wave Bioreactors®. The measurements confirm in particular low shear stress values in both cellbags, indicating favorable hydrodynamic conditions for cell cultivation. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011

Ancillary