SEARCH

SEARCH BY CITATION

Keywords:

  • protein formulation;
  • Donnan effect;
  • protein charge;
  • ultrafiltration;
  • concentration

Abstract

Formulation of protein biopharmaceuticals as highly concentrated liquids can improve the drug substance storage and supply chain, improve the target product profile, and allow greater flexibility in dosing methods. The Donnan effect can cause a large offset in pH from the target value established with the diafiltration buffer during the concentration and diafiltration of charged proteins with ultrafiltration membranes. For neutral formulations, the pH will typically increase above the diafiltration buffer pH for basic monoclonal antibodies and decline below the diafiltration buffer pH for acidic Fc-fusion proteins. In this study, new equations for the Donnan effect during the diafiltration and concentration of proteins in solutions containing monovalent and divalent ions were derived. The new Donnan models obey mass conservation laws, account for the buffering capacity of proteins, and account for protein-ion binding. Data for the pH offsets of an Fc-fusion protein and a monoclonal antibody were predicted in both monovalent and divalent buffers using these equations. To compensate for the pH offset caused by the Donnan effect, diafiltration buffers with pH and excipient values offset from the ultrafiltrate pool specifications can be used. The Donnan offset observed during the concentration of an acidic Fc-fusion protein was mitigated by operating at low temperature. It is important to account for the Donnan effect during preformulation studies. The excipients levels in an ultrafiltration pool may differ from the levels in a protein solution obtained by adding buffers into concentrated protein solutions due to the Donnan effect. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2011