SEARCH

SEARCH BY CITATION

Literature Cited

  • 1
    Kroon DJ,Freedy J,Burinsky DJ,Sharma B. Rapid profiling of carbohydrate glycoforms in monoclonal antibodies using MALDI/TOF mass spectrometry. J Pharm Biomed Anal. 1995; 13: 10491054.
  • 2
    Covalt JCJr,Cao TB,Magdaroag JRC,Jennings PA,Gross LA. Temperature, media, and point of induction affect the N-terminal processing of interleukin-1β. Protein Exp Purif. 2005; 41: 4552.
  • 3
    Werner RG,Kopp K,Schlueter M. Glycosylation of therapeutic proteins in different production systems. Acta Paediatr. 2007; 96: 1722.
  • 4
    Sharma B. Immunogenicity of therapeutic proteins, Part 3: Impact of manufacturing changes. Biotechnol Adv. 2007; 25: 325331.
  • 5
    Yem AW,Richard KA,Staite ND,Deibel MR,Jr. Resolution and biological properties of three N-terminal analogues of recombinant human interleuken-1β. Lymphokine Res. 1988; 7: 8592.
  • 6
    Harris RJ,Kabakoff B,Macchi FD,Shen FJ,Kwong M,Andya JD,Shire SJ,Bjork N,Totpal K,Chen AB. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B. 2001; 752: 233245.
  • 7
    Scallon BJ,Tam SH,McCarthy SG,Cai AN,Raju TS. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol. 2007; 44: 15241534.
  • 8
    Fukuda MN,Sasaki H,Lopez L,Fukuda M. Survival of recombinant erythropoietin in the circulation: The role of carbohydrates. Blood. 1989; 73: 8489.
  • 9
    Sinclair, AM,Elliott, S. Glycoengineering: The effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci. 2005; 94: 16261635.
  • 10
    D'Antonio M,Borrelli F,Datola A,Bucci R,Mascia M,Polletta P,Piscitelli D,Papoian R. Biological characterization of recombinant human follicle stimulating hormone isoforms. Hum Reprod. 1999; 14: 11601167.
  • 11
    Creus S,Chaia Z,Pellizzari EH,Cigorraga SB,Ulloa-Aguirre A,Campo S. Human FSH isoforms: Carbohydrate complexity as determinant of in-vitro bioactivity. Mol Cell Endocrinol. 2001; 174: 4149.
  • 12
    Elliott S,Lorenzini T,Asher S,Aoki K,Brankow D,Buck L,Busse L,Chang D,Fuller J,Grant J,Hernday N,Hokum M,Hu S,Knudten A,Levin N,Komorowski R,Martin F,Navarro R,Osslund T,Rogers G,Rogers N,Trail G,Ergie J. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol. 2003; 21: 414421.
  • 13
    Perlman S,van den Hazel B,Christiansen J,Gram-Nielsen S,Jeppesen CB,Andersen KV,Halkier T,Okkels S,Schambye HT. Glycosylation of an N-terminal extension prolongs the half-life and increases the in vivo activity of follicle stimulating hormone. J Clin Endocrinol Metab. 2003; 88: 32273235.
  • 14
    Weitzhandler M,Farnan D,Horvath J,Rohrer JS,Slingsby RW,Avdalovic N,Pohl C. Protein variant separations by cation-exchange chromatography on tentacle-type polymeric stationary phases. J Chromatogr A. 1998; 828: 365372.
  • 15
    Yamamoto S,Ishihara T. Ion-exchange chromatography of proteins near the isoelectric point. J Chromatogr A. 1999; 852: 3136.
  • 16
    de la Calle Guntiñas MB,Bordin G,Rodriguez AR. Study of the feasibility of using a pellicular anion-exchange column for separation of transferrin isoforms in human serum by HPLC with UV detection. Anal Bioanal Chem. 2004; 378: 383387.
  • 17
    Perkins M,Theiler R,Lunte S,Jeschke M. Determination of the origin of charge heterogeneity in a murine monoclonal antibody. Pharm Res. 2000; 17: 11101117
  • 18
    Monkarsh SP,Russoman EA,Roy SK. Separation of interleukins by a preparative chromatofocusing-like method. J Chromatogr. 1993; 631: 277280.
  • 19
    Mhatre R,Nashabeh W,Schmalzing D,Yao X,Fuchs M,Whitney D,Regnier F. Purification of antibody Fab fragments by cation-exchange chromatography and pH gradient elution. J Chromatogr A. 1995; 707: 225231.
  • 20
    Ahamed T,Nfor BK,Verhaert PDEM,van Dedem GWK,van der Wielen LAM,Eppink MHM,van de Sandt EJAX,Ottens M. pH-gradient ion-exchange chromatography: An analytical tool for design and optimization of protein separations. J Chromatogr A. 2007; 1164: 181188.
  • 21
    Sluyterman LAAE,Elgersma O. Chromatofocusing: Isoeletric focusing on ion-exchange columns. I. General principles. J Chromatogr. 1978; 150: 1730.
  • 22
    Sluyterman LAAE,Wijdenes J. Chromatofocusing: Isoeletric focusing on ion-exchange columns. II. Experimental verification. J Chromatogr. 1978; 150: 3144.
  • 23
    Strong JC,Frey DD. Experimental and numerical studies of the chromatofocusing of dilute proteins using retained pH gradients formed on a strong-base anion-exchange column. J Chromatogr A. 1997; 769: 129143.
  • 24
    Scott JH,Kelner KL,Pollard HB. Purification of synexin by pH step elution from chromatofocusing media in the absence of ampholytes. Anal Biochem. 1985; 149: 163165.
  • 25
    Logan KA,Lagerlund I,Chamow SM. A simple, two-component buffer enhances use of chromatofocusing for processing of therapeutic proteins. Biotechnol Bioeng. 1999; 62: 208215.
  • 26
    Bates RC,Kang X,Frey DD. High-performance chromatofocusing using linear and concave pH gradients formed with simple buffer mixturesIEffect of buffer composition on the gradient shape. J Chromatogr A. 2000; 890: 2536.
  • 27
    Kang X,Bates RC,Frey DD. High-performance chromatofocusing using linear and concave pH gradients formed with simple buffer mixturesIISeparation of proteins. J Chromatogr A. 2000; 890: 3743.
  • 28
    Kang X,Frey DD. High-performance cation-exchange chromatofocusing of proteins. J Chromatogr A. 2003; 991: 117128.
  • 29
    Pabst TM,Carta G. pH transitions in cation exchange chromatographic columns containing weak acid groups. J Chromatogr A. 2007; 1142: 1931.
  • 30
    Bates RC,Frey DD. Quasi-linear pH gradients for chromatofocusing using simple buffer mixtures: Local equilibrium theory and experimental verification. J Chromatogr A. 1998; 814: 4354.
  • 31
    Pabst TM,Antos D,Ramasubramanyan N,Hunter A,Carta G. Protein separations with induced pH gradients using cation exchange chromatographic columns containing weak acid groups. J Chromatogr A. 2008; 1181: 8394.
  • 32
    Yang L,Tang Q,Harrata AK,Lee CS. Capillary isoelectric focusing–electrospray ionization mass spectrometry for transferrin glycoforms analysis. Anal Biochem. 1996; 243: 140149.
  • 33
    Beynon RJ,Easterby JS. Buffer Solutions—The Basics. Oxford: Oxford University Press; 1996: 69.
  • 34
    LideDR, editor. CRC Handbook of Chemistry and Physics,88th Edition (Internet Version 2008), Section 7. Boca Raton, FL: CRC Press/Taylor and Francis; 2008.
  • 35
    Davies CW. Ion Association. London: Butterworths; 1962: 3748.
  • 36
    Stoyanov AV,Righetti PG. Dissociation of polyvalent electrolytes. J Chromatogr A. 1999; 853: 3544.
  • 37
    Helfferich F. Ion Exchange. New York: McGraw-Hill; 1962: Section 4: 7294.
  • 38
    Helfferich F,Klein G. Multicomponent Chromatography: Theory of Interference. Ann Arbor: Marcel Dekker; 1970.
  • 39
    Ruthven DM. Principles of Adsorption and Adsorption Processes. New York: Wiley; 1984.
  • 40
    Soto Pérez J,Frey DD. Behavior of the inadvertent pH transient formed by a salt gradient in the ion-exchange chromatography of proteins. Biotechnol Progr. 2005; 21: 902910.
  • 41
    De Phillips P,Lenhoff AM. Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography. J Chromatogr A. 2000; 883: 3954.
  • 42
    Rounds MA,Regnier FE. Evaluation of a retention model for high-performance ion-exchange chromatography using two different displacing salts. J Chromatogr. 1984; 283: 3745.
  • 43
    Yamamoto S,Nakanishi K,Matsuno R. Ion Exchange Chromatography of Proteins. New York: Marcel Dekker; 1988.
  • 44
    Brooks CA,Cramer SM. Steric mass-action ion exchange: Displacement profiles and induced salt gradients. AIChE J. 1992; 38: 19691978.
  • 45
    Stratil A,Spooner, RL. Isolation and properties of individual components of cattle transferrin: The role of sialic acid. Biochem Genet. 1971; 5: 347365.
  • 46
    Richardson NE,Buttress N,Feinstein A,Stratil A,Spooner RL. Structural Studies on individual components of bovine transferrin. Biochem J. 1973; 135: 8792.
  • 47
    ANX Sepharose 4 Fast Flow (high sub). Amersham Biosciences Data File, GE Healthcare, Piscataway, NJ, 2000.
  • 48
    Frey DD. The entropy condition for the dynamics of nonlinear multicomponent sorption in porous media. Chem Eng Sci. 1990; 45: 131142.
  • 49
    Farkas T,Sepaniak MJ,Guiochon G. Radial distribution of the flow velocity, efficiency and concentration in a wide HPLC column. AIChE J. 1997; 43: 19641974.
  • 50
    Snyder LR,Kirkland JJ. Introduction to Modern Liquid Chromatography, 2nd ed. New York: Wiley; 1979: 234240.