• pervaporation;
  • polydimethylsiloxane composite membrane;
  • 1-butanol;
  • A-B-E fermentation;
  • solution-diffusion mechanism


In this study, the application of a new polydimethylsiloxane (PDMS)/dual support composite membrane was investigated by incorporating the pervaporation process into the A-B-E (acetone-butanol-ethanol) fermentation. The performance of the A-B-E fermentation using the integrated pervaporation/fermentation process showed higher biomass concentrations and higher glucose consumption rates than those of the A-B-E fermentation without pervaporation. The performance of the membrane separation was studied during the separation of 1-butanol from three different 1-butanol solutions: binary, model, and fermentation culture solutions. The solution-diffusion model, specifically the mass transfer equation based on Fick's First Law, was shown to be applicable to the undefined A-B-E fermentation culture solutions. A quantitative comparison of 1-butanol separation from the three different solutions was made by calculating overall mass transfer coefficients of 1-butanol. It was found that the overall mass transfer coefficients during the separation of binary, model, and fermentation culture solutions were 1.50, 1.26, and 1.08 mm/h, respectively. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011