SEARCH

SEARCH BY CITATION

Literature Cited

  • 1
    Rao G, Moreira A, Brorson K. Disposable bioprocessing: the future has arrived. Biotechnol Bioeng. 2009; 102: 348356.
  • 2
    Montgomery SA. Operations and quality systems building in success. BioProcess Int Suppl. 2006; 5871.
  • 3
    Sellick I, Pora H. Single-use process systems. Next Gen Pharm. 2008; Available at: http://www.ngpharma.eu.com/pastissue/article.asp?art=271735&issue=224.
  • 4
    Sinclair A, Monge M. The role of disposables in rapid response manufacturing. Biopharm Int. 2009; 2831.
  • 5
    Langer ES, Ranck J. The ROI case: economic justification for disposables in biopharmaceutical manufacturing. BioProcess Int. 2005; 10: S46S50.
  • 6
    Rawlings B, Pora H. Environmental impact of single-use and reusable bioprocess systems. BioProcess Int. 2009; 7: 1825.
  • 7
    Junker B. Minimizing the environmental footprint of bioprocesses. Part 1: Introduction and evaluation of solid-waste disposal. BioProcess Int. 2010; 8: 6271.
  • 8
    Junker B. Minimizing the environmental footprint of bioprocesses. Part 2: Evaluation of wastewater, electricity, and air emissions. BioProcess Int. 2010; 8: 3646.
  • 9
    Radiofrequency identification feasibility studies and pilot programs for drugs. Guidance for FDA Staff and Industry Compliance Policy Guides Sec 400210. 2004. Available at: http://www.fda.gov/oc/ initiatives/counterfeit/rfid_cpg.html.
  • 10
    Finkenzeller K. RFID Handbook. Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd ed. Hoboken, NJ: Wiley; 2003.
  • 11
    Lehpamer H. RFID Design Principles. Norwood, MA: Artech House; 2008.
  • 12
    Lehtonen M, Staake T, Michahelles F, Fleisch E. From identification to authentication—a review of RFID product authentication techniques. In: ColePH, RanasingheDC, editors. Networked RFID Systems and Lightweight Cryptography Raising Barriers to Product Counterfeiting. Springer: Berlin Heidelberg; 2008: 169187.
  • 13
    Junker B, Wang HY. Bioprocess monitoring and computer control: key roots of the current PAT initiative. Biotechnol Bioeng. 2006; 95: 226261.
  • 14
    Potyrailo RA, Morris WG. Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. Anal Chem. 2007; 79: 4551.
  • 15
    Potyrailo RA, Mouquin H, Morris WG. Position-independent chemical quantitation with passive 13.56-MHz radio frequency identification (RFID) sensors. Talanta. 2008; 75: 624628.
  • 16
    Potyrailo RA, Morris WG, Sivavec T, Tomlinson HW, Klensmeden S, Lindh K. RFID sensors based on ubiquitous passive 13.56-MHz RFID tags and complex impedance detection. Wirel Commun Mob Comput. 2009; 9: 13181330.
  • 17
    Potyrailo RA, Surman C, Go S, Lee Y, Sivavec T, Morris WG. Development of radio-frequency identification sensors based on organic electronic sensing materials for selective detection of toxic vapors. J Appl Phys. 2009; 106: 124902.
  • 18
    Harms P, Kostov Y, Rao G. Bioprocess monitoring. Curr Opin Biotechnol. 2002; 13: 124127.
  • 19
    Clark KJR, Furey J. Suitability of selected single-use process monitoring and control technology. BioProcess Int. 2006; 4: S16S20.
  • 20
    Vojinovic V, Cabral JMS, Fonseca LP. Real-time bioprocess monitoring: Part I: In situ sensors. Sens Actuators B. 2006; 114: 10831091.
  • 21
    Clementschitsch F, Bayer K. Improvement of bioprocess monitoring: development of novel concepts. Microbiol Cell Fact. 2006; 19.
  • 22
    Badugu R, Kostov Y, Rao G, Tolosa L. Development and application of an excitation ratiometric optical pH sensor for bioprocess monitoring. Biotechnol Prog. 2008; 24: 13931401.
  • 23
    Van Leeuwen M, Heijnen JJ, Gardeniers H, Van Der Wielen LAM, Van Gulik WM. Development of a system for the on-line measurement of carbon dioxide production in microbioreactors: application to aerobic batch cultivations of candida utilis. Biotechnol Prog. 2009; 25: 892897.
  • 24
    van Leeuwen M, Krommenhoek EE, Heijnen JJ, Gardeniers H, van der Wielen LAM, van Gulik WM. Aerobic batch cultivation in micro bioreactor with integrated electrochemical sensor array. Biotechnol Prog. 2010; 26: 293300.
  • 25
    Rao G, Kostov Y, Moreira A, Frey D, Hanson M, Jornitz M, Reif O-W, Baumfalk R, Qualitz J. Non-invasive sensors as enablers of "smart" disposables. BioProcess International. 2009; 7 ( Suppl 1): 2427.
  • 26
    Glindkamp A, Riechers D, Rehbock C, Hitzmann B, Scheper T, Reardon KF. Sensors in disposable bioreactors status and trends. Adv Biochem Eng/Biotechnol. 2010; 115: 145169.
  • 27
    Masui S, Teramoto T. A 13.56 MHz CMOS RF identification passive tag LSI with ferroelectric random access memory. IEICE Trans Electron. 2005; E88-C: 601607.
  • 28
    Marsh T. Viagra RFID: one year later. Tracking Tracing Pharm Products. 2007; 811.
  • 29
    Baloda S, Martin J, Carter J, Jenness E, Judd B, Smeltz K, Uettwiller I, Hockstad M. Guide to irradiation and sterilization validation of single-use bioprocess systems, part 1. BioProcess Int. 2007; 3240.
  • 30
    Production and process controls. Available at: http://www.accessdatafdagov/scripts/cdrh/cfdocs/cfcfr/CFRSearchcfm?fr=82070. 2010.
  • 31
    Potyrailo RA, Surman C, Morris WG, Go S, Lee Y, Cella JA, Chichak KS. Selective quantitation of vapors and their mixtures using individual passive multivariable RFID sensors. IEEE Int Conf RFID, IEEE RFID. 2010; 2228.
  • 32
    Diamond JM. Inductive conductivity meter for monitoring the salinity of dialysis water. IEEE Trans Bio-Med Eng. 1970; BME-17: 109117.
  • 33
    Striggow K, Dankert R. The exact theory of inductive conductivity sensors for oceanographic application. IEEE J Oceanic Eng. 1985; 10: 175179.
  • 34
    Natarajan SP, Weller TM, Fries DP. Sensitivity tunable inductive fluid conductivity sensor based on RF phase detection. IEEE Sensors J. 2007; 7: 13001301.
  • 35
    Yin W, Peyton AJ, Zysko G, Denno R. Simultaneous noncontact measurement of water level and conductivity. IEEE Trans Instrum Meas. 2008; 57: 26652669.
  • 36
    Potyrailo RA, Surman C, Morris WG, Ehring H, Wortley T, Pizzi V, Carter J, Gach G. Passive gamma-resistant RFID tags integrated into gamma-sterilizable pharmaceutical components. IEEE Int Conf RFID, IEEE RFID. 2010; 110117.
  • 37
    Ong KG, Grimes CA. A resonant printed-circuit sensor for remote query monitoring of environmental parameters. Smart Mater Struct. 2000; 9: 421428.
  • 38
    Hofmann MC, Kensy F, Buechs J, Mokwa W, Schnakenberg U. Transponder-based sensor for monitoring electrical properties of biological cell solutions. J Biosci Bioeng. 2005; 100: 172177.
  • 39
    Potyrailo RA, Monk DJ, Morris WG, Klensmeden S, Ehring H, Wortley T, Pizzi V, Carter J, Gach G. Integration of passive multivariable RFID sensors into single-use biopharmaceutical manufacturing components. IEEE Int Conf RFID, IEEE RFID. 2010; 17.
  • 40
    Potyrailo RA, Morris WG. Methods and Systems for Calibration of RFID Sensors. 2011 US Patent 7,911,345. 2009. Available at: http://www.uspto.gov.
  • 41
    Erhard G. Designing with Plastics. Munich: Hanser Publishers; 2006.
  • 42
    Jachowicz RS, Wojtowicz G, Weremczuk J. Non-contact passive electromagnetic transmitter to any capacitive sensor—design, theory, and model tests. Sens Actuators A. 2000; 85: 402408.
  • 43
    Potyrailo RA, Go S, Morris WG. Modeling of selectivity of multi-analyte response of passive radio frequency identification (RFID) sensors. In: 12th International Meeting on Chemical Sensors. Columbus, OH: Elsevier Science; 2008. Talk MMAS11.
  • 44
    Jurs PC, Bakken GA, McClelland HE. Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem Rev. 2000; 100: 26492678.
  • 45
    Potyrailo RA, Pizzi VF, Wang H. System and Method for Monitoring Parameters in Containers. 2010. US Patent 7,775,083.