SEARCH

SEARCH BY CITATION

Resources Mentioned in the Article

  • 1
    International Standards Organization. (2006). ISO 11179-2 Information technology – Metadata registries (MDR). Part 2. Classification. Retrieved September 15, 2012, from http://metadata-standards.org/11179/
  • 2
    International Standards Organization. (2011). ISO 25964 Thesaurus schemas. Retrieved September 15, 2012, from www.niso.org/schemas/iso25964/
  • 3
    American National Standards Institute (2010). ANSI/NISO Z39.19 (R2010) Guidelines for the construction, format, and management of monolingual controlled vocabularies. Retrieved September 15, 2012, from www.niso.org/apps/group_public/project/details.php?project_id=46
  • 4
    Ranganathan, S. R. (1957). Prolegomena to library classification. London: The Library Association.
  • 5
    Devlin, K. (1993) The joy of sets. New York: Springer Verlag.
  • 6
    Borko, H., & Bernick, M. (1963). Automatic document classification. Journal of the Association for Computing Machinery, 10(2), 151162.
  • 7
    Borko, H. (1964). Measuring the reliability of subject classification by men and machines. American Documentation, 15(4), 268273.
  • 8
    Borko, H., & Bernick, M. (1964). Automatic document classification. Part II. Additional experiments. Journal of the Association for Computing Machinery, 11(2), 138151.
  • 9
    Borko, H. (May 1-3, 1962). The construction of an empirically based mathematically derived classification system. Proceedings of the Joint Computer Conference, 21, 279289.
  • 10
    Maron, M. E. (1961). Automatic indexing: An experimental inquiry. Journal of the Association for Computing Machinery, 8(3), 407417.
  • 11
    Hanson, B. A., & Brennan, R. I. (1990). An investigation of classification consistency indexes estimated under alternative strong true score models. Journal of Educational Measurement, 27(4), 345359.
  • 12
    Lee, W.-C., & Brennan, R. L. (2009). Classification consistency and accuracy for complex assessments under the compound multinomial model. Applied Psychological Measurement, 33(5), 374390.
  • 13
    Lee, W.-C., Hanson, B. A., & Brennan, R. I. (2002). Estimating consistency and accuracy indices for multiple classifications. Applied Psychological Measurement, 26(4), 412432.
  • 14
    Bedford, D.A.D., & Gracy, K. F. (July 2012). Leveraging semantic analysis technologies to increase effectiveness and efficiency of access to information. Qualitative and Quantitative Methods in Libraries (QQML) 1(1), 13–26.
  • 15
    Fischer, K., (2005). Critical views of LCSH, 1990–2001: The third bibliographic essay. Cataloging & Classification Quarterly, 41(1), 63109.
  • 16
    Olson, T. (2008). LCSH to MeSH, MeSH to LCSH. Cataloging & Classification Quarterly, 46(4), 438439.
  • 17
    Schabas, A. H. (1982). Post coordinate retrieval: A comparison of two indexing languages. Journal of the American Society for Information Science, 33(1), 3237.
  • 18
    Strader, C. R. (2009). Author-assigned keywords versus Library of Congress Subject Headings: Implications for the cataloging of electronic theses and dissertations. Library Resources and Technical Services, 53(4), 243250. Retrieved November 14, 2012 from www.ala.org/alcts/sites/ala.org.alcts/files/content/resources/lrts/archive/53n4.pdf
  • 19
    Boros, E., Ibaraki, T., & Makino, K. (1998). Error-free and best-fit extensions of partially defined Boolean functions. Information and Computation, 140(2), 254283. Retrieved November 15, 2012, from http://biomet.oxfordjournals.org/content/91/1/45.full.pdf
  • 20
    Chen, M.-H., Dey, D. K., & Ibrahim, J. G. (2004). Bayesian criterion based model assessment for categorical data. Biometrika, 91(1), 4563.
  • 21
    Ciesiak, D., & Chowla, N. (2009). A framework for monitoring classifiers' performance: When and why failure occurs. Knowledge and Information Systems, 18(1), 83108.
  • 22
    Cunningham, M. A. (2006). Accuracy assessment of digitized and classified land cover data for wildlife habitat. Landscape and Urban Planning, 78(3), 217228.
  • 23
    Garland, K. (1983). An experiment in automatic hierarchical document classification. Information Processing and Management, 19(3), 113120.
  • 24
    Hammer, P. L., Kogan, A., Simeone, B., & Szedmak, S. (2004). Pareto-optimal patterns in logical analysis of data. Discrete Applied Mathematics, 114(1-2), 79102.
  • 25
    Heaps, H. S. (1973). A theory of relevance for automatic document classification. Information and Control, 22(3), 268278.
  • 26
    Hildalgo, J. M. G. (2002). Evaluating cost-sensitive unsolicited bulk email categorization. Proceedings of the 2002 ACM Symposium on Applied Computing (SAC '02), 615620.
  • 27
    Kattan, M. W., & Cooper, R. B. (1998). The predictive accuracy of computer-based classification decision techniques: A review and research directions. Omega: The International Journal of Management Science, 26(4), 467482.
  • 28
    Kelil, A., Wang, S., Jiang, Q., & Brzezinsky, R. (2010). A general measure of similarity for categorical sequences. Knowledge and Information Systems, 24(2), 197220.
  • 29
    Lewis, D. D. (1991). Evaluating text categorization. In HLT' 91: Proceedings of the Workshop on Speech and Natural Language [pp. 312318]. Stroudsberg, PA: Association for Computational Linguistics.
  • 30
    Szollosi, D., Denes, L. D., Firtha, F., Kovacs, Z., & Fekete, A. (2012). Comparison of six multiclass classifiers by the use of different classification performance indicators. Chemometrics, 15(3-4), 7684.
  • 31
    Subramanian, V., Hung, M.S., & Hu, M.Y. (1993). An experimental evaluation of neural networks for classification. Computers in Operations Research, 20(7), 769782.
  • 32
    Sun, A., & Lim, E.-P. (2001). Hierarchical text classification and evaluation. In Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM 2001) [pp. 521528]. New York, IEEE. Retrieved November 14, 2012, from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=989492
  • 33
    Villa Medina, J. L., Boqué, R., & Ferré, J. (2009). Bagged k-nearest neighbour's classification with uncertainty in the variables. Analytica Chimica Acta, 646(1-2), 6268.
  • 34
    Winters, W. K. (1965). A modified method of latent class analysis for file organization in information retrieval. Journal of the Association for Computing Machinery, 12(3), 356363.
  • 35
    Wyse, A. E. (2011). The potential impact of not being able to create parallel tests on expected classification accuracy. Applied Psychological Measurement, 35(2), 110126.
  • 36
    Yang, Y. (1999). An evaluation of statistical approaches to text categorization. Journal of Information Retrieval, 1(1-2), 6990.
  • 37
    Education Resources Information Center. Thesaurus of ERIC Descriptors. Retrieved September 15, 2012, from www.eric.ed.gov/ERICWebPortal/resources/html/thesaurus/about_thesaurus.html
  • 38
    American Heritage Dictionary of the English Language. Livestock. Retrieved September 15, 2012, from www.ahdictionary.com/word/search.html?q=livestock.
  • 39
    Food and Agriculture Organization. Classification of livestock. Retrieved September 15, 2012, from www.fao.org/fileadmin/templates/ess/documents/world_census_of_agriculture/appendix5_r7.pdf
  • 40
    Library of Congress. Library of Congress Subject Headings. Retrieved September 15, 2012, from http://id.loc.gov/authorities/subjects/sh85077784.html
  • 41
    Kahneman, D., Slovik, P., & Tversky, A. (Eds.) (1982). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.
  • 42
    SAS Inc. (2012). SAS enterprise content categorization studio. Retrieved September 15, 2012, from www.sas.com/text-analytics/enterprise-content-categorization/index.html