A comparison of hepatic segmental anatomy as revealed by cross-sections and MPR CT imaging



To compare the areas of human liver horizontal sections with computed tomography (CT) images and to evaluate whether the subsegments determined by CT are consistent with the actual anatomy. Six human cadaver livers were made into horizontal slices with multislice spiral CT three-dimensional (3D) reconstruction was used during infusion process. Each liver segment was displayed using different color, and 3D images of the portal and hepatic vein were reconstructed. Each segmental area was measured on CT-reconstructed images, which were compared with the actual area on the sections of the same liver. The measurements were performed at four key levels namely: (1) the three hepatic veins, (2) the left, and (3) the right branch of portal vein (PV), and (4) caudal to the bifurcation of the PV. By dividing the sum of these areas by the total area of the liver, the authors got the percentage of the incorrectly determined subsegmental areas. In addition to these percentage values, the maximum distances of the radiologically determined intersegmental boundaries from the true anatomic boundaries were measured. On the four key levels, an average of 28.64 ± 10.26% of the hepatic area of CT images was attributed to an incorrect segment. The mean-maximum error between artificial segments on images and actual anatomical segments was 3.81 ± 1.37 cm. The correlation between radiological segmenting method and actual anatomy was poor. The hepatic segments being divided strictly according to the branching point of the PV could be more informative during liver segmental resection. Clin. Anat. 2013. © 2012 Wiley Periodicals, Inc.