SEARCH

SEARCH BY CITATION

References

  • 1
    Farkas-Himsley, H., R. Hill, B. Rosen, S. Arab, and C. A. Lingwood. 1995. The bacterial colicin active against tumor cells in vitro and in vivo is verotoxin 1. Proc. Natl. Acad. Sci. USA 92:69967000.
  • 2
    Farkas-Himsley, H., Y. S. Zhang, M. Yuan, and C. E. Musclow. 1992. Partially purified bacteriocin kills malignant cells by apoptosis: programmed cell death. Cell Mol. Biol. 38:643651.
  • 3
    Sand, S. L., T. M. Haug, J. Nissen-Meyer, and O. Sand. 2007. The bacterial peptide pheromone plantaricin A permeabilizes cancerous, but not normal, rat pituitary cells and differentiates between the outer and inner membrane leaflet. J. Membr. Biol. 216:6171.
  • 4
    Koczulla, A. R., and R. Bals. 2003. Antimicrobial peptides: current status and therapeutic potential. Drugs 63:389406.
  • 5
    Brotz, H., and H.-G. Sahl. 2000. New insights into the mechanism of action of lantibiotics-diverse biological effects by binding at the same molecular target. J. Antimicrob. Chemother. 46:16.
  • 6
    Moll, G. N., W. C. Chan, B. W. Bycroft, G. C. Roberts, W. N. Konings, and A. J. Driessen. 1997. Role of transmembrane pH gradient and membrane binding in nisin pore formation. J. Bacteriol. 179:135140.
  • 7
    Wiedemann, I., E. Breukink, C. van Kraaij, O. P. Kuipers, G. Bierbaum, B. de Kruijff, et al. 2001. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 276:17721779.
  • 8
    Giffard, C. J., S. Ladha, A. R. Mackie, D. C. Clark, and D. Sanders. 1996. Interaction of nisin with planar lipid bilayers monitored by fluorescence recovery after photobleaching. J. Membr. Biol. 151:293300.
  • 9
    Were, L. M., B. D. Bruce, P. M. Davidson, and J. Weiss. 2003. Size, stability, and entrapment efficiency of phospholipids nanocapsules containing polypeptide antimicrobials. J. Agric. Food Chem. 51:80738079.
  • 10
    Eckert, R. L. 1989. Structure, function, and differentiation of the keratinoctye. Phys. Rev. 69:13161346.
  • 11
    Gasparoni, A., L. Fonzi, G. B. Schneider, P. W. Wertz, G. K. Johnson, and C. A. Squier. 2004. Comparison of differentiation markers between normal and two squamous cell carcinoma cell lines in culture. Arch. Oral Biol. 49:653664.
  • 12
    Ponec, M., J. Kempenaar, and J. Boonstra. 1987. Regulation of lipid synthesis in relation to keratinocyte differentiation capacity. Biochim. Biophys. Acta 921:512521.
  • 13
    Ponec, M., L. Havekes, J. Kempenaar, S. Lavrijsen, and B. J. Vermeer. 1984. Defective low-density lipoprotein metabolism in cultured, normal, transformed, and malignant keratinocytes. J. Invest. Derm. 83:436440.
  • 14
    Tertoolen, L. G. J., J. Kempenaar, J. Boonstra, S. W. de Laat, and M. Ponec. 1988. Lateral mobility of plasma membrane lipids in normal and transformed keratinoctyes. Biochem. Biophys. Res. Commun. 152:491496.
  • 15
    Tripathi, P., P. Kamarajan, S. S. Bagganahalli, N. MacKinnon, A. M. Chinnaiyan, Y. L. Kapila, et al. 2012. Delineating metabolic signatures of head and neck squamous cell carcinoma: phospholipase A2, a potential therapeutic target. Int. J. Biochem. Cell Biol. 44:18521861.
  • 16
    Mattson, M., and S. Chan. 2003. Calcium orchestrates apoptosis. Nat. Cell Biol. 5:10411043.
  • 17
    Mungrue, I. N., J. Pagnon, O. Kohannim, P. S. Gargalovic, and A. J. Lusis. 2009. CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade. J. Immunol. 182:466476.
  • 18
    Baker, M. A., W. L. Molay, M. Zasloff, and L. S. Jacob. 1993. Anticancer efficacy of magainin 2 and analogue peptides. Cancer Res. 53:30523057.
  • 19
    Hara, S., K. Yakazu, K. Nakakawaji, T. Takeuchi, T. Kobayashi, M. Sata, et al. 1962. An investigation of toxicity of Nisin. Tokyo Med. Univ. J. 20:176.
  • 20
    Pesquera, T. I. 1966. Nisin – its use, estimation and toxicology in sterilized milk. Revita Espanola de Lecheria 5:25.
  • 21
    Frazer, A. C., M. Sharratt, and J. R. Hickman. 1962. The biological effects of food additives. J. Sci. Food Agric. 13:3242.
  • 22
    Alhazzazi, T. Y., P. Kamarajan, N. Joo, J. Y. Huang, E. Verdin, N. J. D'Silva, et al. 2011. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 117:16701678.
  • 23
    Kamarajan, P., T. Y. Alhazzazi, T. Danciu, N. J. D'silva, E. Verdin, and Y. L. Kapila. 2012. Receptor-interacting protein (RIP) and Sirtuin-3 (SIRT3) are on opposite sides of anoikis and tumorigenesis. Cancer. doi: 10.1002/cncr.27655.
  • 24
    Breukink, E., I. Wiedemann, C. van Kraaij, O. P. Kuipers, H. Sahl, and B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:23612364.
  • 25
    Choi, J., M. K. Lee, O. K. Ho, Y. S. Kim, H. Y. Choi, S. K. Baek, et al. 2011. Interaction effect between the receptor for advanced glycation end products (RAGE) and high-mobility group box-1 (HMGB-1) for the migration of a squamous cell carcinoma cell line. Tumori 97:196202.
  • 26
    Kohn, E. C., E. Reed, E. Sarosy, M. Christian, C. J. Link, K. A. Cole, et al. 1996. Clinical investigation of a cytostatic calcium influx inhibitor in patients with refractory cancers. Cancer Res. 56:569573.
  • 27
    Wu, Y., A. J. Palad, W. J. Wasilenko, P. F. Blackmore, W. A. Pincus, G. L. Schechter, et al. 1997. Inhibition of head and neck squamous cell carcinoma growth and invasion by the calcium influx inhibitor carboxyamido-triazole. Clin. Cancer Res. 3:19151921.
  • 28
    Wu, D. M., D. Zhao, D. Z. Li, D. Y. Xu, W. F. Chu, and X. F. Wang. 2011. Maslinic acid induces apoptosis in salivary gland adenoid cystic carcinoma cells by Ca2+-evoked p38 signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol. 383:321330.