SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Russell JA. A circumplex model of affect. Journal of Personality and Social Psychology 1980; 39: 11611178.
  • 2
    Etemad SA, Arya A. 3d human action recognition and style transformation using resilient backpropagation neural networks, In IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009. ICIS 2009, Vol. 4, Ottawa, ON, Canada, 2009; 296301.
  • 3
    Ali S, Basharat A, Shah M. Chaotic invariants for human action recognition, In IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, Rio de Janeiro, Brazil, 2007; 18.
  • 4
    Huimin Q, Yaobin M, Wenbo X, Zhiquan W. Recognition of human activities using SVM multi-class classifier. Pattern Recognition Letters 2010; 31: 100111.
  • 5
    Mori T, Nejigane Y, Shimosaka M, Segawa Y, Harada T, Sato T. Online recognition and segmentation for time-series motion with hmm and conceptual relation of actions, 2005.
  • 6
    Parameswaran V, Chellappa R. View invariants for human action recognition, In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, Vol. 2, College Park, MD, USA, 2006; II613–19.
  • 7
    Troje NF. Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of Vision 2002; 2(5): 371387.
  • 8
    Coulson M. Attributing emotion to static body postures: recognition accuracy, confusions, and viewpoint dependence. Journal of Nonverbal Behavior 2004; 28(2): 117139.
  • 9
    Wallbott HG. Bodily expression of emotion. European Journal of Social Psychology 1998; 28: 879896.
  • 10
    Atkinson AP, Dittrich WH, Gemmell AJ, Young AW. Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception 2004; 33: 717746.
  • 11
    Kapur A, Kapur A, Virji-Babul N, Tzanetakis G, Driessen PF. Gesture-based affective computing on motion capture data. In Proceedings of the First International Conference on Affective Computing and Intelligent Interaction. Springer Verlag: Berlin, Heidelberg, 2005; 17.
  • 12
    Rose C, Cohen MF, Bodenheimer B. Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Applications 1998; 18(5): 3240.
  • 13
    Grochow K, Martin SL, Hertzmann A, Popović Z. Style-based inverse kinematics. ACM Transactions on Graphics 2004; 23: 522531.
  • 14
    Ma W, Xia S, Hodgins JK, Yang X, Li C, Wang Z. Modeling style and variation in human motion, In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Beijing, China, 2010; 2130.
  • 15
    Senin P. Dynamic Time Warping Algorithm Review. 2, Department of Information and Computer Sciences, University of Hawaii, Honolulu, Hawaii 96822, Dec. 2008.
  • 16
    Heloir A, Courty N, Gibet S, Multon F. Temporal alignment of communicative gesture sequences: Research articles. Computer Animation and Virtual Worlds 2006; 17(3–4): 347357.
  • 17
    Krüger B, Tautges J, Weber A, Zinke A. Fast local and global similarity searches in large motion capture databases. In 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, Aire-la-Ville, Switzerland, 2010; 110.
  • 18
    De Silva PR, Bianchi-Berthouze N. Modeling human affective postures: an information theoretic characterization of posture features: Research articles. Computer Animation and Virtual Worlds 2004; 15: 269276.
  • 19
    Hsu CF, Lin CJ. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 2002; 13: 415425.
  • 20
    Stehman SV. Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment 1997; 62(1): 7789.