Upstream Petroleum Degradation of Mangroves and Intertidal Shores: The Niger Delta Experience



This article was inspired by a field reconnaissance survey of outcrops along the Nembe-Brass axis of the petroliferous Niger Delta. It reviews various tradeoffs of the impact of upstream petroleum (seismic and production) operations on the mangrove ecosystems in that region, the largest in Sub-Saharan Africa. Mangroves and intertidal shores are considered critical to the economic well-being of this region owing to the people's dual occupation in fishing and farming. The mangrove ecosystem provides a nutrient medium, which serves as a nursery and spawning ground for many fish species and other biota. Oil and gas activities might destroy these spawn areas, causing reduction in resource output and community pressure. Devegetation of the mangrove forest as a result of seismic delineation leaves the fragile soil exposed, unprotected, and susceptible to erosion. Again, loss of vegetation might discourage the natural role of plants in air purification (CO2 utilization and O2 production). The release of nutrients (organic N2, NH3, and NOequation image) and polyaromatic hydrocarbons (PAHs) to the environment, with the attendant increase in microbial load, increases biochemical O2 demand (BOD) and depletes dissolved O2 (DO) in H2O to a level that is beyond the tolerance limit of organisms. This anoxic situation leads to asphyxiation and subsequent fish kill in affected areas. In order of increasing vulnerability, the mangroves and intertidal shores of the Niger Delta fall under categories 8 to 10 on the environmental sensitivity index (ESI) scale, which predisposes the areas to serious long-term effects and clean-up complexity. Thus, there is need to monitor mangrove systems and shoreline changes in the areas of considerable seismic and production activities, especially in the coastal Niger Delta, where pipeline corrosion due to salt intrusion into the swampy environment and ‘unsighted fingers’ of sabotage have increased the prevalence of oil spills.