• Origanum vulgare;
  • Essential oils;
  • Amplified fragment length polymorphism (AFLP);
  • Selectively amplified microsatellite polymorphic loci (SAMPL);
  • Polymorphism;
  • Principal-component analysis (PCA);
  • Cluster analysis (CA)


In total, 42 accessions of Origanum vulgare L., mostly originating from Europe, were evaluated, to detect molecular, quantitative morphological, and chemotype polymorphisms and to discover possible correlations between them. Twelve traits related to morphological characteristics were measured. The components in the essential oils were identified by GC/MS analysis, and the oil contents of 18 major compounds were determined. A total of 477 molecular polymorphisms including 214 AFLP (amplified fragment length polymorphism) and 263 SAMPL (selectively amplified microsatellite polymorphic loci) were used for genotyping. Euclidean distances of morphological and chemotypic data and genetic distances (1 – Dice's similarity) of molecular markers were compared by applying Mantel tests to ascertain the congruencies between them. A relatively high correlation between chemotypic patterns and genetic markers was identified, while a lower correlation was found between the morphological and genetic matrices. Pairwise analyses of correlation among all traits showed that the stem diameter was correlated to the essential-oil yield and the carvacrol content. Cluster analysis, population inference, and principal component analysis revealed a broad genetic and chemical variation among the accessions. The knowledge of these diversities, found in this study, will allow a plant improvement of Origanum vulgare related to pharmaceutical and spice uses.