• biosynthesis;
  • glycosylation;
  • methylation;
  • rebeccamycin


Rebeccamycin and staurosporine represent two broad classes of indolocarbazole glycoside natural products with antitumor properties. Based upon previous sequence annotation and in vivo studies, rebG encodes for the rebeccamycin N-glucosyltransferase, and rebM for the requisite 4′-O-methyltransferase. In the current study, an efficient in vivo biotransformation system for RebG was established in both Streptomyces lividans and Escherichia coli. Bioconversion experiments revealed RebG to glucosylate a set of indolocarbazole surrogates, the products of which could be further modified by in vitro RebM-catalyzed 4′-O-methylation. Both RebG and RebM displayed substrate promiscuity, and evidence for a remarkable lack of RebG regioselectivity in the presence of asymmetric substrates is also provided. In the context of the created indolocarbazole analogues, cytotoxicity assays also highlight the importance of 4′-O-methylation for their biological activity.