Get access

Surface-Induced Regulation of Podosome Organization and Dynamics in Cultured Osteoclasts



Bone is continuously repaired and remodeled through the well-coordinated activity of osteoblasts, which form new bone, and osteoclasts, which resorb it. How osteoclasts sense the properties of the bone surface remains unclear. By combining light and electron microscopy, we compared osteoclast behavior on three distinct surfaces: glass, calcite single crystals, and bone. Podosomes, the basic units of the adhesion structure, and their organization into superstructures were found to be common to cells that were attached to all three substrates, whereas the structure of the resorption organelle, the so-called “ruffled border,” markedly differed. Moreover, the integrity, stability, and dynamic behavior of the adhesion superstructures also fundamentally differed, depending on the substrate. We conclude that osteoclasts sense the local properties of the underlying substrate and respond to these signals, both locally and globally.