SEARCH

SEARCH BY CITATION

Keywords:

  • chemoenzymatic synthesis;
  • endoglycosidases;
  • glycopeptides;
  • glycosylation;
  • sugar oxazoline

Abstract

Structurally well defined, homogeneous glycopeptides and glycoproteins are indispensable tools for functional glycomics studies. By screening of various endo-β-N-acetylglucosaminidases through the use of appropriate synthetic donor and acceptor substrates, we have found that the Flavobacterium meningosepticum endo-β-N-acetyl-glucosaminidases (GH family 18), including Endo-F2 and Endo-F3, were able to glycosylate α-1,6-fucosylated GlcNAc derivative to provide natural, corefucosylated complex-type N-glycopeptides. The Endo-F2 and Endo-F3 were efficient for transferring both sialylated and asialylated glycans and were highly specific for an α-1,6-fucosylated GlcNAc-peptide as acceptor for transglycosylation, showing only marginal activity with non-fucosylated GlcNAc-peptides. In contrast, we found that the commonly used endoglycosidases such as Endo-A and Endo-M, which belong to GH family 85, were unable to take α-1,6-fucosyl-GlcNAc derivative as acceptors for transglycosylation. The novel activity of Endo-F2 and Endo-F3 was successfully applied for a highly convergent chemoenzymatic synthesis of a full-sized CD52 glycopeptide antigen carrying both terminal sialic acid and core fucose. This is the first report on endoglycosidases that are able to glycosylate α-1,6-fucosylated GlcNAc derivatives to form natural core-fucosylated glycopeptides.