SEARCH

SEARCH BY CITATION

Keywords:

  • CYP102D1;
  • cytochromes;
  • diol-sensing;
  • HTS assay;
  • hydroxylation;
  • O-dealkylation

Abstract

A current challenge in high-throughput screening (HTS) of hydroxylation reactions by P450 is a fast and sensitive assay for regioselective hydroxylation against millions of mutants. We have developed a solid-agar plate-based HTS assay for screening ortho-specific hydroxylation of daidzein by sensing formaldehyde generated from the O-dealkylation reaction. This method adopts a colorimetric dye, pararosaniline, which has previously been used as an aldehyde-specific probe within cells. The rationale for this method lies in the fact that the hydroxylation activity at ortho-carbon position to C[BOND]OH correlates with a linear relationship to O-dealkylation activity on chemically introduced methoxy group at the corresponding C[BOND]OH. As a model system, a 4′,7-dihydroxyisoflavone (daidzein) hydroxylase (CYP102D1 F96V/M246I), which catalyzes hydroxylation at ortho positions of the daidzein A/B-ring, was examined for O-dealklyation activity, by using permethylated daidzein as a surrogate substrate. By using the developed indirect bishydroxylation screening assay, the correlation coefficient between O-dealkylation and bishydroxylation activity for the template enzyme was 0.72. For further application of this assay, saturation mutants at A273/G274/T277 were examined by mutant screening with a permethylated daidzein analogue substrate (A-ring inactivated in order to find enhanced 3′-regioselectiviy). The whole-cell biotransformation of daidzein by final screened mutant G1 (A273H/G274E/T277G) showed fourfold increased conversion yield, with 14.3 mg L−1 production titer and greatly increased 3′-regioselectiviy (3′/6=11.8). These results show that there is a remarkably high correlation (both in vitro and in vivo), thus suggesting that this assay would be ideal for a primary HTS assay for P450 reactions.