SEARCH

SEARCH BY CITATION

Keywords:

  • chemoenzymatic synthesis;
  • glycan microarrays;
  • glycoconjugates;
  • lectins;
  • Nod factors

Abstract

Glycan microarrays have emerged as novel tools to study carbohydrate–protein interactions. Here we describe the preparation of a covalent microarray with lipochitin oligosaccharides and its use in studying proteins containing LysM domains. The glycan microarray was assembled from glycoconjugates that were synthesized by using recently developed bifunctional chemoselective aminooxy reagents without the need for transient carbohydrate protecting groups. We describe for the first time the preparation of a covalent microarray with lipochitin oligosaccharides and its use for studying proteins containing LysM domains. Lipochitin oligosaccharides (also referred to as Nod factors) were isolated from bacterial strains or chemoenzymatically synthesized. The glycan microarray also included peptidoglycan-related compounds, as well as chitin oligosaccharides of different lengths. In total, 30 ligands were treated with the aminooxy linker molecule. The identity of the glycoconjugates was verified by mass spectrometry, and they were then immobilized on the array. The presence of the glycoconjugates on the array surface was confirmed by use of lectins and human sera (IgG binding). The functionality of our array was tested with a bacterial LysM domain-containing protein, autolysin p60, which is known to act on the bacterial cell wall peptidoglycan. P60 showed specific binding to Nod factors and to chitin oligosaccharides. Increasing affinity was observed with increasing chitin oligomer length.