• carbohydrates;
  • enzymes;
  • hydrolases;
  • inhibitors;
  • reaction mechanisms


Natural and synthetic unsaturated glucuronides were tested as substrates for Clostridium perfringens unsaturated glucuronyl hydrolase to probe its mechanism and to guide inhibitor design. Of the natural substrates, a chondroitin disaccharide substrate with sulfation of the primary alcohol on carbon 6 of its N-acetylgalactosamine moiety was found to have the highest turnover number of any substrate reported for an unsaturated glucuronyl hydrolase, with kcat=112 s−1. Synthetic aryl glycoside substrates with electron-withdrawing aglycone substituents were cleaved more slowly than those with electron-donating substituents. Similarly, an unsaturated glucuronyl fluoride was found to be a particularly poor substrate, with kcat/Km=44 nM−1 s−1—a very unusual result for a glycoside-cleaving enzyme. These results are consistent with a transition state with positive charge at carbon 5 and the endocyclic oxygen, as anticipated in the hydration mechanism proposed. However, several analogues designed to take advantage of strong enzyme binding to such a transition state showed little to no inhibition. This result suggests that further work is required to understand the true nature of the transition state stabilised by this enzyme.