Specificity of a UDP-GalNAc Pyranose–Furanose Mutase: A Potential Therapeutic Target for Campylobacter jejuni Infections

Authors

  • Dr. Myles B. Poulin,

    1. Alberta Glycomics Centre and Department of Chemistry, The University of Alberta, Gunning–Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2 (Canada)
    Search for more papers by this author
  • Yun Shi,

    1. Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 (Canada)
    Search for more papers by this author
  • Carla Protsko,

    1. Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9 (Canada)
    Search for more papers by this author
  • Dr. Sean A. Dalrymple,

    1. Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9 (Canada)
    Search for more papers by this author
  • Prof. David A. R. Sanders,

    1. Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9 (Canada)
    Search for more papers by this author
  • Prof. B. Mario Pinto,

    1. Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 (Canada)
    Search for more papers by this author
  • Prof. Todd L. Lowary

    Corresponding author
    1. Alberta Glycomics Centre and Department of Chemistry, The University of Alberta, Gunning–Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2 (Canada)
    • Alberta Glycomics Centre and Department of Chemistry, The University of Alberta, Gunning–Lemieux Chemistry Centre, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2 (Canada)===

    Search for more papers by this author

Abstract

Pyranose–furanose mutases are essential enzymes in the life cycle of a number of microorganisms, but are absent in mammalian systems, and hence represent novel targets for drug development. To date, all such mutases show preferential recognition of a single substrate (e.g., UDP-Gal). We report here the detailed structural characterization of the first bifunctional pyranose–furanose mutase, which recognizes both UDP-Gal and UDP-GalNAc. The enzyme under investigation (cjUNGM) is involved in the biosynthesis of capsular polysaccharides (CPSs) in Campylobacter jejuni 11168. These CPSs are known virulence factors that are required for adhesion and invasion of human epithelial cells. Using a combination of UV/visible spectroscopy, X-ray crystallography, saturation transfer difference NMR spectroscopy, molecular dynamics and CORCEMA-ST calculations, we have characterized the binding of the enzyme to both UDP-Galp and UDP-GalpNAc, and compared these interactions with those of a homologous monofunctional mutase enzyme from E. coli (ecUGM). These studies reveal that two arginines in cjUNGM, Arg59 and Arg168, play critical roles in the catalytic mechanism of the enzyme and in controlling its specificity to ultimately lead to a GalfNAc-containing CPS. In ecUGM, these arginines are replaced with histidine and lysine, respectively, and this results in an enzyme that is selective for UDP-Gal. We propose that these changes in amino acids allow C. jejuni 11168 to produce suitable quantities of the sugar nucleotide substrate required for the assembly of a CPS containing GalfNAc, which is essential for viability.

Ancillary