Invasion and genome reproduction of the trophoblast cells of placenta junctional zone in the field vole, Microtus rossiaemeridionalis

Authors


Abstract

In the field vole Microtus rossiaemeridionalis, like in other rodents, invasive secondary giant trophoblast cells (SGTC) form a continuous layer at the foeto–maternal interface in the beginning of placentation. However, in the field vole, at midgestation, clusters of junctional zone (JZ) trophoblast non-giant cells interrupt SGTC layer and progressively replace SGTC at the border of decidua basalis. As a result, ‘border’ cells form a continuous stratum of cytokeratin-positive glycogen-rich cells at the foeto–maternal interface. SGTC plunge into JZ and line the lacunae with maternal blood. SGTC are bound by their highly cytokeratin-positive sprouts forming a framework that holds other trophoblast cell populations. According to DNA cytophotometry, the ‘border’ cells show the highest ploidy among the JZ cells (up to 46% of 8c cells). Thus, in M. rossiaemeridionalis the role of barrier between semiallogenic foetal and maternal tissues is shifted from the highly endopolyploid (32c-1024c) SGTC to the specific subpopulation of glycogen-rich non-giant (2c-16c) ‘border’ trophoblast cells that, however, exceed the ploidy of the deeply located and/or proliferative JZ trophoblast cells.

Ancillary