• cardiomyocytes;
  • differentiation;
  • embryoid body;
  • human embryonic stem cells;
  • mouse embryonic stem cells


This comparative study investigates the method, efficiency, and anti-hypoxic ability of cardiomyocytes, directionally induced from human (h) and mouse (m) embryonic stem cells (ESCs). hESCs were induced into cardiomyocytes by suspension culture, without inducers, or adherent culture using the inducers activin A and BMP4. mESCs were induced into cardiomyocytes by hanging-drop method, without inducers or induced with vitamin C. All four methods successfully induced ESCs to differentiate into cardiomyocytes. There was a significant difference between groups with and without inducers. A significant difference was found between mESC and hESC groups with inducers. The average beating frequency of cardiomyocytes differentiated from hESC was lower than cardiomyocytes differentiated from mESC, while the average beating frequency of cardiomyocytes differentiated from the same cell line, despite different culture methods, did not differ. Beating cardiomyocytes of each group were positive for cTnT staining. Spontaneous action potentials of beating cardiomyocytes were detected by patch-clamp experiments in each group. Different apoptotic ratios were detected in beating cardiomyocytes in each group and the difference between cardiomyocytes induced from mESCs and hESCs was statistically significant. The differentiation efficiencies in the groups without inducers were significantly higher than those without inducers. The induction of mESCs was more simple and efficient compared with hESCs. Without the presence of other protective factors, the anti-hypoxic ability of cardiomyocytes induced from hESCs was stronger and the beating times were longer in vitro compared with mESCs.