• 1
    Dabelea, D., E. J. Mayer-Davis, J. S. Andrews, L. M. Dolan, C. Pihoker, R. F. Hamman, et al. 2012. Clinical evolution of beta cell function in youth with diabetes: the SEARCH for Diabetes in Youth study. Diabetologia 55:33593368.
  • 2
    McCarthy, M. I., and A. T. Hattersley. 2008. Learning from molecular genetics: novel insights arising from the definition of genes for monogenic and type 2 diabetes. Diabetes 57:28892898.
  • 3
    Sperling, M. A. 2006. ATP-sensitive potassium channels–neonatal diabetes mellitus and beyond. N. Engl. J. Med. 355:507510.
  • 4
    Bonnefond, A., E. Durand, O. Sand, F. De Graeve, S. Gallina, K. Busiah, et al. 2010. Molecular diagnosis of neonatal diabetes mellitus using next-generation sequencing of the whole exome. PLoS ONE 5:e13630.
  • 5
    Nicolino, M., K. C. Claiborn, V. Senée, A. Boland, D. A. Stoffers, and C. Julier. 2010. A novel hypomorphic PDX1 mutation responsible for permanent neonatal diabetes with subclinical exocrine deficiency. Diabetes 59:733740.
  • 6
    Al-Shammari, M., M. Al-Husain, T. Al-Kharfy, and F. S. Alkuraya. 2011. A novel PTF1A mutation in a patient with severe pancreatic and cerebellar involvement. Clin. Genet. 80:196198.
  • 7
    D'Amato, E., F. Giacopelli, A. Giannattasio, G. D'Annunzio, R. Bocciardi, M. Musso, et al. 2010. Genetic investigation in an Italian child with an unusual association of atrial septal defect, attributable to a new familial GATA4 gene mutation, and neonatal diabetes due to pancreatic agenesis. Diabet. Med. 27:11951200.
  • 8
    De Franco, E., C. Shaw-Smith, S. E. Flanagan, M. H. Shepherd, A. T. Hattersley, and S. Ellard. 2013. GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine insufficiency. Diabetes 62:993997.
  • 9
    Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:17541760.
  • 10
    McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:12971303.
  • 11
    Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:20782079.
  • 12
    Wang, K., M. Li, and H. Hakonarson. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38:e164.
  • 13
    Johansson, S., H. Irgens, K. K. Chudasama, J. Molnes, J. Aerts, F. S. Roque, et al. 2012. Exome sequencing and genetic testing for MODY. PLoS ONE 7:e38050.
  • 14
    Bonnefond, A., O. Sand, B. Guerin, E. Durand, F. De Graeve, M. Huyvaert, et al. 2012. GATA6 inactivating mutations are associated with heart defects and, inconsistently, with pancreatic agenesis and diabetes. Diabetologia 55:28452847.
  • 15
    Yorifuji, T., R. Kawakita, Y. Hosokawa, R. Fujimaru, E. Yamaguchi, and N. Tamagawa. 2012. Dominantly inherited diabetes mellitus caused by GATA6 haploinsufficiency: variable intrafamilial presentation. J. Med. Genet. 49:642643.
  • 16
    Xuan, S., M. J. Borok, K. J. Decker, M. A. Battle, S. A. Duncan, M. A. Hale, et al. 2012. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J. Clin. Invest. 122:35163528.
  • 17
    Carrasco, M., I. Delgado, B. Soria, F. Martín, and A. Rojas. 2012. GATA4 and GATA6 control mouse pancreas organogenesis. J. Clin. Invest. 122:35043515.
  • 18
    Viger, R. S., S. M. Guittot, M. Anttonen, D. B. Wilson, and M. Heikinheimo. 2008. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol. Endocrinol. 22:781798.
  • 19
    Molkentin, J. D.. 2000. The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J. Biol. Chem. 275:3894938952.
  • 20
    Lin, X., Z. Huo, X. Liu, Y. Zhang, L. Li, H. Zhao, et al. 2010. A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J. Hum. Genet. 55:662667.
  • 21
    Kodo, K., T. Nishizawa, M. Furutani, S. Arai, K. Ishihara, M. Oda, et al. 2012. Genetic analysis of essential cardiac transcription factors in 256 patients with non-syndromic congenital heart defects. Circ. J. 76:17031711.
  • 22
    Zheng, G.-F., D. Wei, H. Zhao, N. Zhou, Y.-Q. Yang, and X.-Y. Liu. 2012. A novel GATA6 mutation associated with congenital ventricular septal defect. Int. J. Mol. Med. 29:10651071.
  • 23
    Maitra, M., S. N. Koenig, D. Srivastava, and V. Garg. 2010. Identification of GATA6 sequence variants in patients with congenital heart defects. Pediatr. Res. 68:281285.
  • 24
    Kodo, K., T. Nishizawa, M. Furutani, S. Arai, E. Yamamura, K. Joo, et al. 2009. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc. Natl. Acad. Sci. U S A 106:1393313938.
  • 25
    Lango Allen, H., S. E. Flanagan, C. Shaw-Smith, E. De Franco, I. Akerman, R. Caswell, et al. 2012. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat. Genet. 44:2022.
  • 26
    Rodríguez-Seguí, S., I. Akerman, and J. Ferrer. 2012. GATA believe it: new essential regulators of pancreas development. J. Clin. Invest. 122:34693471.