SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    María V. Gil, Javier Fermoso, Fernando Rubiera, De Chen, H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology, Catalysis Today, 2015, 242, 19

    CrossRef

  2. 2
    Shengping Wang, Hui Shen, Shasha Fan, Yujun Zhao, Xinbin Ma, Jinlong Gong, CaO-based meshed hollow spheres for CO2 capture, Chemical Engineering Science, 2014,

    CrossRef

  3. 3
    Jizhe Zhang, Miao Sun, Xin Liu, Yu Han, Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields, Catalysis Today, 2014, 233, 77

    CrossRef

  4. 4
    Aitor Ochoa, Borja Aramburu, María Ibáñez, Beatriz Valle, Javier Bilbao, Ana G. Gayubo, Pedro Castaño, Compositional Insights and Valorization Pathways for Carbonaceous Material Deposited During Bio-Oil Thermal Treatment, ChemSusChem, 2014, 7, 9
  5. 5
    Arnaud Thevenon, Ewan Frost-Pennington, Gan Weijia, Andrew F. Dalebrook, Gábor Laurenczy, Formic Acid Dehydrogenation Catalysed by Tris(TPPTS) Ruthenium Species: Mechanism of the Initial “Fast” Cycle, ChemCatChem, 2014, 6, 11
  6. 6
    Javier Fermoso, María V. Gil, Fernando Rubiera, De Chen, Multifunctional Pd/Ni–Co Catalyst for Hydrogen Production by Chemical Looping Coupled With Steam Reforming of Acetic Acid, ChemSusChem, 2014, 7, 11
  7. 7
    Yi Chen, Renhua Qiu, Xinhua Xu, Chak-Tong Au, Shuang-Feng Yin, Organoantimony and organobismuth complexes for CO2 fixation, RSC Advances, 2014, 4, 23, 11907

    CrossRef

  8. 8
    Tayyaba Noor, María V. Gil, De Chen, Production of fuel-cell grade hydrogen by sorption enhanced water gas shift reaction using Pd/Ni–Co catalysts, Applied Catalysis B: Environmental, 2014, 150-151, 585

    CrossRef

  9. 9
    MyatNoeZin Myint, Yushan Yan, Jingguang G. Chen, Reaction Pathways of Propanal and 1-Propanol on Fe/Ni(111) and Cu/Ni(111) Bimetallic Surfaces, The Journal of Physical Chemistry C, 2014, 118, 21, 11340

    CrossRef

  10. 10
    Shuirong Li, Jinlong Gong, Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions, Chem. Soc. Rev., 2014, 43, 21, 7245

    CrossRef

  11. 11
    Yaroslava Lykhach, Armin Neitzel, Klára Ševčíková, Viktor Johánek, Nataliya Tsud, Tomáš Skála, Kevin C. Prince, Vladimír Matolín, Jörg Libuda, The Mechanism of Hydrocarbon Oxygenate Reforming: C[BOND]C Bond Scission, Carbon Formation, and Noble-Metal-Free Oxide Catalysts, ChemSusChem, 2014, 7, 1
  12. 12
    Yi Ma, Xiuli Wang, Yushuai Jia, Xiaobo Chen, Hongxian Han, Can Li, Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations, Chemical Reviews, 2014, 114, 19, 9987

    CrossRef

  13. 13
    Gabriele Centi, Elsje Alessandra Quadrelli, Siglinda Perathoner, Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy & Environmental Science, 2013, 6, 6, 1711

    CrossRef

  14. 14
    Hong Lu, Yongqi Lu, Massoud Rostam-Abadi, CO2 sorbents for a sorption-enhanced water–gas-shift process in IGCC plants: A thermodynamic analysis and process simulation study, International Journal of Hydrogen Energy, 2013, 38, 16, 6663

    CrossRef

  15. 15
    Z. Ma, S. Zhang, D. Xie, Y. Yan, Z. Ren, Hydrogen Production from Bio-Char via Steam Gasification in a Fluidized-Bed Reactor, Chemical Engineering & Technology, 2013, 36, 9
  16. 16
    Gaowei Wu, Chengxi Zhang, Shuirong Li, Zhiping Han, Tuo Wang, Xinbin Ma, Jinlong Gong, Hydrogen Production via Glycerol Steam Reforming over Ni/Al2O3: Influence of Nickel Precursors, ACS Sustainable Chemistry & Engineering, 2013, 1, 8, 1052

    CrossRef

  17. 17
    Andrew F. Dalebrook, Weijia Gan, Martin Grasemann, Séverine Moret, Gábor Laurenczy, Hydrogen storage: beyond conventional methods, Chemical Communications, 2013, 49, 78, 8735

    CrossRef

  18. 18
    Alberto Naldoni, Massimiliano D’Arienzo, Marco Altomare, Marcello Marelli, Roberto Scotti, Franca Morazzoni, Elena Selli, Vladimiro Dal Santo, Pt and Au/TiO2 photocatalysts for methanol reforming: Role of metal nanoparticles in tuning charge trapping properties and photoefficiency, Applied Catalysis B: Environmental, 2013, 130-131, 239

    CrossRef

  19. 19
    Wenhao Fang, Cyril Pirez, Sébastien Paul, Mickaël Capron, Hervé Jobic, Franck Dumeignil, Louise Jalowiecki-Duhamel, Room Temperature Hydrogen Production from Ethanol over CeNiXHZOY Nano-Oxyhydride Catalysts, ChemCatChem, 2013, 5, 8
  20. 20
    Weijia Gan, Dennis J. M. Snelders, Paul J. Dyson, Gábor Laurenczy, Ruthenium(II)-Catalyzed Hydrogen Generation from Formic Acid using Cationic, Ammoniomethyl-Substituted Triarylphosphine Ligands, ChemCatChem, 2013, 5, 5
  21. 21
    Yanan Zhang, Tristan R. Brown, Guiping Hu, Robert C. Brown, Techno-economic analysis of two bio-oil upgrading pathways, Chemical Engineering Journal, 2013, 225, 895

    CrossRef

  22. 22
    Víctor Martínez-Merino, María José Gil, Alfonso Cornejo, Renewable Hydrogen Technologies, 2013,

    CrossRef

  23. 23
    Gabriele Centi, Siglinda Perathoner, The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, 2013,

    CrossRef

  24. 24
    Thallada Bhaskar, Bhavya Balagurumurthy, Rawel Singh, Mukesh Kumar Poddar, Biohydrogen, 2013,

    CrossRef

  25. 25
    Li He, Jia Yang, De Chen, Renewable Hydrogen Technologies, 2013,

    CrossRef

  26. 26
    Shuhua Liu, Shi-Qiang Bai, Yuangang Zheng, Kwok Wei Shah, Ming-Yong Han, Composite Metal–Oxide Nanocatalysts, ChemCatChem, 2012, 4, 10
  27. 27
    Roya Dehghan-Niri, John C. Walmsley, Anders Holmen, Paul A. Midgley, Erlying Rytter, Anh Hoang Dam, Ana B. Hungria, Juan C. Hernandez-Garrido, De Chen, Nanoconfinement of Ni clusters towards a high sintering resistance of steam methane reforming catalysts, Catalysis Science & Technology, 2012, 2, 12, 2476

    CrossRef

  28. 28
    Yusuke Yamada, Takamitsu Miyahigashi, Kei Ohkubo, Shunichi Fukuzumi, Photocatalytic hydrogen evolution from carbon-neutral oxalate with 2-phenyl-4-(1-naphthyl)quinolinium ion and metal nanoparticles, Physical Chemistry Chemical Physics, 2012, 14, 30, 10564

    CrossRef

  29. 29
    Javier Fermoso, Li He, De Chen, Production of high purity hydrogen by sorption enhanced steam reforming of crude glycerol, International Journal of Hydrogen Energy, 2012, 37, 19, 14047

    CrossRef

  30. 30
    Yalei Zhang, Zheng Shen, Xuefei Zhou, Min Zhang, Fangmin Jin, Solvent isotope effect and mechanism for the production of hydrogen and lactic acid from glycerol under hydrothermal alkaline conditions, Green Chemistry, 2012, 14, 12, 3285

    CrossRef

  31. 31
    Zhiming Zhou, Yang Qi, Miaomiao Xie, Zhenmin Cheng, Weikang Yuan, Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance, Chemical Engineering Science, 2012, 74, 172

    CrossRef

  32. 32
    De Chen, Li He, ChemInform Abstract: Towards an Efficient Hydrogen Production from Biomass: A Review of Processes and Materials, ChemInform, 2011, 42, 27
  33. 33
    Martin Nielsen, Anja Kammer, Daniela Cozzula, Henrik Junge, Serafino Gladiali, Matthias Beller, Efficient Hydrogen Production from Alcohols under Mild Reaction Conditions, Angewandte Chemie International Edition, 2011, 50, 41
  34. 34
    Martin Nielsen, Anja Kammer, Daniela Cozzula, Henrik Junge, Serafino Gladiali, Matthias Beller, Efficient Hydrogen Production from Alcohols under Mild Reaction Conditions, Angewandte Chemie, 2011, 123, 41
  35. 35
    Zhong He, Xianqin Wang, Properties of Nanocatalytic Materials for Hydrogen Production from Renewable Resources,