SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Xiaowei Zhou, Michael W. Nolte, Heather B. Mayes, Brent H. Shanks, Linda J. Broadbelt, Experimental and Mechanistic Modeling of Fast Pyrolysis of Neat Glucose-Based Carbohydrates. 1. Experiments and Development of a Detailed Mechanistic Model, Industrial & Engineering Chemistry Research, 2014, 140816080116006

    CrossRef

  2. 2
    Xiaowei Zhou, Michael W. Nolte, Brent H. Shanks, Linda J. Broadbelt, Experimental and Mechanistic Modeling of Fast Pyrolysis of Neat Glucose-Based Carbohydrates. 2. Validation and Evaluation of the Mechanistic Model, Industrial & Engineering Chemistry Research, 2014, 140811142817008

    CrossRef

  3. 3
    S.W. Banks, D.J. Nowakowski, A.V. Bridgwater, Fast pyrolysis processing of surfactant washed Miscanthus, Fuel Processing Technology, 2014, 128, 94

    CrossRef

  4. 4
    Cong Liu, Rajeev S. Assary, Larry A. Curtiss, Investigation of Thermochemistry Associated with the Carbon–Carbon Coupling Reactions of Furan and Furfural Using ab Initio Methods, The Journal of Physical Chemistry A, 2014, 118, 25, 4392

    CrossRef

  5. 5
    Yayun Zhang, Chao Liu, Hui Xie, Mechanism studies on β-d-glucopyranose pyrolysis by density functional theory methods, Journal of Analytical and Applied Pyrolysis, 2014, 105, 23

    CrossRef

  6. 6
    Qiang Lu, Yang Zhang, Chang-qing Dong, Yong-ping Yang, Hai-zhu Yu, The mechanism for the formation of levoglucosenone during pyrolysis of β-d-glucopyranose and cellobiose: a density functional theory study, Journal of Analytical and Applied Pyrolysis, 2014,

    CrossRef

  7. 7
    Ariel M. Sarotti, Theoretical insight into the pyrolytic deformylation of levoglucosenone and isolevoglucosenone, Carbohydrate Research, 2014, 390, 76

    CrossRef

  8. 8
    Tunei Lin, Elke Goos, Uwe Riedel, A sectional approach for biomass: Modelling the pyrolysis of cellulose, Fuel Processing Technology, 2013, 115, 246

    CrossRef

  9. 9
    Rajeev S. Assary, Larry A. Curtiss, James A. Dumesic, Exploring Meerwein–Ponndorf–Verley Reduction Chemistry for Biomass Catalysis Using a First-Principles Approach, ACS Catalysis, 2013, 3, 12, 2694

    CrossRef

  10. 10
    Vishal Agarwal, Paul J. Dauenhauer, George W. Huber, Scott M. Auerbach, Ab Initio Dynamics of Cellulose Pyrolysis: Nascent Decomposition Pathways at 327 and 600 °C, Journal of the American Chemical Society, 2012, 134, 36, 14958

    CrossRef

  11. 11
    Yun Yu, Dawei Liu, Hongwei Wu, Characterization of Water-Soluble Intermediates from Slow Pyrolysis of Cellulose at Low Temperatures, Energy & Fuels, 2012, 26, 12, 7331

    CrossRef

  12. 12
    Rajeev S. Assary, Larry A. Curtiss, Comparison of Sugar Molecule Decomposition through Glucose and Fructose: A High-Level Quantum Chemical Study, Energy & Fuels, 2012, 26, 2, 1344

    CrossRef

  13. 13
    Vikram Seshadri, Phillip R. Westmoreland, Concerted Reactions and Mechanism of Glucose Pyrolysis and Implications for Cellulose Kinetics, The Journal of Physical Chemistry A, 2012, 116, 49, 11997

    CrossRef

  14. 14
    Matthew S. Mettler, Dionisios G. Vlachos, Paul J. Dauenhauer, Top ten fundamental challenges of biomass pyrolysis for biofuels, Energy & Environmental Science, 2012, 5, 7, 7797

    CrossRef

  15. 15
    Heather B. Mayes, Linda J. Broadbelt, Unraveling the Reactions that Unravel Cellulose, The Journal of Physical Chemistry A, 2012, 116, 26, 7098

    CrossRef