Get access
Advertisement

Sulfur Promotion in Conjugated Isomerization of Safflower Oil over Bifunctional Structured Rh/SBA-15 Catalysts

Authors

  • Dr. Nasima Chorfa,

    1. Department of Soil Sciences and Agri-Food Engineering and Centre de Recherche sur les Propriétés des Interfaces et la Catalyse (CERPIC), Université Laval, Paul-Comtois Building, Québec, G1V 0A6 (Canada), Fax: (+1) 418 656-3723
    Search for more papers by this author
  • Prof. Safia Hamoudi,

    1. Department of Soil Sciences and Agri-Food Engineering and Centre de Recherche sur les Propriétés des Interfaces et la Catalyse (CERPIC), Université Laval, Paul-Comtois Building, Québec, G1V 0A6 (Canada), Fax: (+1) 418 656-3723
    Search for more papers by this author
  • Prof. Joseph Arul,

    1. Department of Food Science and Nutrition, Université Laval, Paul-Comtois Building, Québec, G1V 0A6 (Canada)
    Search for more papers by this author
  • Prof. Khaled Belkacemi

    Corresponding author
    1. Department of Soil Sciences and Agri-Food Engineering and Centre de Recherche sur les Propriétés des Interfaces et la Catalyse (CERPIC), Université Laval, Paul-Comtois Building, Québec, G1V 0A6 (Canada), Fax: (+1) 418 656-3723
    • Department of Soil Sciences and Agri-Food Engineering and Centre de Recherche sur les Propriétés des Interfaces et la Catalyse (CERPIC), Université Laval, Paul-Comtois Building, Québec, G1V 0A6 (Canada), Fax: (+1) 418 656-3723

    Search for more papers by this author

Abstract

The sulfur effect on conjugated linoleic acid isomer (CLA) formation during the combined hydrogenation/directed isomerization of safflower oil over a bifunctional (hydrogenation and isomerization) highly structured rhodium-based catalyst (Rh/SBA-15) was investigated either by direct addition of increased concentrations of 3-mercapto-1,2-propanediol to the reaction medium or by doping Rh/SBA-15 with the same sulfur-based compound yielding the sulfur-doped Rh-catalyst (S–Rh/SBA-15). These catalysts exhibited interesting activity, stability, and recyclability.

 The maximum CLA contents obtained during the combined reactions with 0, 0.2, 1, 2, 5, and 10 ppm sulfur additions were 73, 99, 131, 110, 105, and 68 mgCLA goil−1, respectively, whereas the amount of harmful trans monoenes remained below 8 %. The safflower oil after partially hydrogenation under the same conditions over S–Rh/SBA-15 catalyst contained up to 110 mgCLA goil−1. These results showed clear evidence of the sulfur promotion effect on CLA formation during the dual hydrogenation/directed isomerization of safflower oil.

 A mechanism for the sulfur promotion of the heterogeneous catalyst Rh/SBA-15 for the conjugated isomerization activity during hydrogenation/directed isomerization of safflower oil was determined by solid-state 1H NMR analysis of the fresh and spent catalysts. This was also confirmed by liquid-state 2H NMR analysis of deuterium-labeled product aliquots withdrawn throughout the reaction.

 The sulfur promotion towards the double bond conjugation of linoleic acid to form CLA isomers could be explained mechanistically through the preferable formation of the more nucleophilic rhodium sulfide (Rh[BOND]SH) over that of the hydride (Rh[BOND]H). However, both types of Rh clusters constituted distinct catalytic sites leading to the formation of hydrogenation as well as conjugated and geometric isomerization products. The lumped kinetics model described the experimental data well and complied simply with the proposed mechanism.

Get access to the full text of this article

Ancillary